首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems
【24h】

A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems

机译:基于高斯混合模型的代价函数用于混沌生物系统参数估计

获取原文
获取原文并翻译 | 示例

摘要

As we know, many biological systems such as neurons or the heart can exhibit chaotic behavior. Conventional methods for parameter estimation in models of these systems have some limitations caused by sensitivity to initial conditions. In this paper, a novel cost function is proposed to overcome those limitations by building a statistical model on the distribution of the real system attractor in state space. This cost function is defined by the use of a likelihood score in a Gaussian mixture model (GMM) which is fitted to the observed attractor generated by the real system. Using that learned GMM, a similarity score can be defined by the computed likelihood score of the model time series. We have applied the proposed method to the parameter estimation of two important biological systems, a neuron and a cardiac pacemaker, which show chaotic behavior. Some simulated experiments are given to verify the usefulness of the proposed approach in clean and noisy conditions. The results show the adequacy of the proposed cost function.
机译:众所周知,许多生物系统,例如神经元或心脏,都可能表现出混乱的行为。这些系统模型中用于参数估计的常规方法由于对初始条件的敏感性而导致某些限制。在本文中,提出了一种新颖的成本函数,通过建立一个关于状态空间中实际系统吸引子分布的统计模型来克服这些限制。该成本函数是通过在高斯混合模型(GMM)中使用似然度得分定义的,该模型拟合到实际系统生成的观测吸引子。使用所学的GMM,可以通过计算出的模型时间序列的似然度分数来定义相似度分数。我们已经将所提出的方法应用于两个重要的生物系统(神经元和心脏起搏器)的参数估计,这两个系统表现出混沌行为。给出了一些模拟实验,以验证该方法在清洁和嘈杂的条件下的有效性。结果表明所提出的成本函数是足够的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号