首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A 3D model for rain-induced landslides based on molecular dynamics with fractal and fractional water diffusion
【24h】

A 3D model for rain-induced landslides based on molecular dynamics with fractal and fractional water diffusion

机译:基于分形和分形水扩散的分子动力学的降雨诱发滑坡的3D模型

获取原文
获取原文并翻译 | 示例

摘要

We present a three-dimensional model of rain-induced landslides, based on cohesive spherical particles. The rainwater infiltration into the soil follows either the fractional or the fractal diffusion equations. We analytically solve the fractal partial differential equation (PDE) for diffusion with particular boundary conditions to simulate a rainfall event. We developed a numerical integration scheme for the PDE, compared with the analytical solution. We adapt the fractal diffusion equation obtaining the gravimetric water content that we use as input of a triggering scheme based on Mohr-Coulomb limit-equilibrium criterion. This triggering is then complemented by a standard molecular dynamics algorithm, with an interaction force inspired by the Lennard-Jones potential, to update the positions and velocities of particles. We present our results for homogeneous and heterogeneous systems, i.e., systems composed by particles with same or different radius, respectively. Interestingly, in the heterogeneous case, we observe segregation effects due to the different volume of the particles. Finally, we analyze the parameter sensibility both for the triggering and the propagation phases. Our simulations confirm the results of a previous two-dimensional model and therefore the feasible applicability to real cases. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们提出了基于粘性球形颗粒的降雨诱发滑坡的三维模型。雨水向土壤中的渗透遵循分数或分数扩散方程。我们以解析的方式求解了具有特定边界条件的扩散的分形偏微分方程(PDE),以模拟降雨事件。与解析解决方案相比,我们为PDE开发了一种数值积分方案。我们采用分形扩散方程来获得重量水含量,该重量水含量用作基于Mohr-Coulomb极限平衡准则的触发方案的输入。然后,通过标准的分子动力学算法对这种触发进行补充,并利用Lennard-Jones势所激发的相互作用力来更新粒子的位置和速度。我们介绍了均质和异质系统的结果,即分别由半径相同或不同的粒子组成的系统。有趣的是,在异质情况下,我们观察到由于颗粒体积不同而产生的偏析效应。最后,我们分析了触发阶段和传播阶段的参数敏感性。我们的仿真证实了先前二维模型的结果,因此证实了对实际案例的可行适用性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号