首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Applications of homogenous balanced principle on investigating exact solutions to a series of time fractional nonlinear PDEs
【24h】

Applications of homogenous balanced principle on investigating exact solutions to a series of time fractional nonlinear PDEs

机译:同质平衡原理在研究一系列时间分数非线性PDE的精确解中的应用

获取原文
获取原文并翻译 | 示例

摘要

By using a counterexample, we proved the fractional chain rule appeared in many references does not hold under Riemann-Liouville definition and Caputo definition of fractional derivative. It shows that this chain rule is invalid in investigating exact solutions of nonlinear fractional partial differential equations (PDEs). In this paper, based on the homogenous balanced principle, the function-expansion method of separation variable type are introduced. By using this method, a series of nonlinear time fractional PDEs such as time fractional KdV equation and Burgers equation, time fractional diffusion-convection equations are studied from mathematical viewpoint. The dynamical properties of these exact solutions are discussed and the profiles of several representative exact solutions are illustrated. (c) 2016 Elsevier B.V. All rights reserved.
机译:通过使用反例,我们证明了分数链规则在Riemann-Liouville定义和Caputo分数导数定义下不适用于许多参考文献。它表明该链规则在研究非线性分数阶偏微分方程(PDE)的精确解中是无效的。本文基于均匀平衡原理,介绍了分离变量类型的功能扩展方法。通过这种方法,从数学的角度研究了一系列非线性时间分数PDE,例如时间分数KdV方程和Burgers方程,时间分数扩散对流方程。讨论了这些精确解的动力学性质,并说明了几种代表性精确解的概况。 (c)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号