首页> 外文期刊>Communications Letters, IEEE >Construction of quasi-cyclic LDPC codes based on a two-dimensional MDS code
【24h】

Construction of quasi-cyclic LDPC codes based on a two-dimensional MDS code

机译:基于二维MDS码的准循环LDPC码的构造

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we first propose a general framework for constructing quasi-cyclic low-density parity-check (QCLDPC) codes based on a two-dimensional (2-D) maximum distance separable (MDS) code. Two classes of QC-LDPC codes are defined, whose parity-check matrices are transposes of each other. We then use a 2-D generalized Reed-Solomon (GRS) code to give a concrete construction. The decoding parity-check matrices have a large number of redundant parity-check equations while their Tanner graphs have a girth of at least 6. The minimum distances of the codes are very respectable. Experimental studies show that the constructed QC-LDPC codes perform well with the sum-product algorithm (SPA).
机译:在这封信中,我们首先提出了一个基于二维(2-D)最大距离可分离(MDS)码构造准循环低密度奇偶校验(QCLDPC)码的通用框架。定义了两类QC-LDPC码,它们的奇偶校验矩阵互为转置。然后,我们使用二维广义Reed-Solomon(GRS)代码给出具体结构。解码奇偶校验矩阵具有大量冗余奇偶校验方程,而它们的Tanner图的周长至少为6。代码的最小距离非常可观。实验研究表明,所构造的QC-LDPC码与和积算法(SPA)表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号