首页> 外文期刊>IEEE communications letters >Deep Learning-Based Joint Pilot Design and Channel Estimation for Multiuser MIMO Channels
【24h】

Deep Learning-Based Joint Pilot Design and Channel Estimation for Multiuser MIMO Channels

机译:基于深度学习的多用户MIMO信道联合导频设计和信道估计

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we propose a joint pilot design and channel estimation scheme based on the deep learning (DL) technique for multiuser multiple-input multiple output (MIMO) channels. To this end, we construct a pilot designer using two-layer neural networks (TNNs) and a channel estimator using deep neural networks (DNNs), which are jointly trained to minimize the mean square error (MSE) of channel estimation. To effectively reduce the interference among the multiple users, we also use the successive interference cancellation (SIC) technique in the channel estimation process. The numerical results demonstrate that the proposed scheme considerably outperforms the linear minimum mean square error (LMMSE) based channel estimation scheme.
机译:在这封信中,我们针对多用户多输入多输出(MIMO)信道,提出了一种基于深度学习(DL)技术的联合导频设计和信道估计方案。为此,我们构建了一个使用两层神经网络(TNN)的飞行员设计器和一个使用深度神经网络(DNN)的信道估计器,它们经过共同训练以最小化信道估计的均方误差(MSE)。为了有效减少多个用户之间的干扰,我们还在信道估计过程中使用了连续干扰消除(SIC)技术。数值结果表明,该方案明显优于基于线性最小均方误差(LMMSE)的信道估计方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号