首页> 外文期刊>Communications, IEEE Transactions on >Practical Quantizer Design for Half-Duplex Estimate-and-Forward Relaying
【24h】

Practical Quantizer Design for Half-Duplex Estimate-and-Forward Relaying

机译:半双工估计转发中继的实用量化器设计

获取原文
获取原文并翻译 | 示例

摘要

We propose a quantizer design method for practical half-duplex estimate-and-forward (EF) relaying. First, we identify the regime in which EF relaying yields substantial gains - where the SNR is low and the relay-destination link is strong. Then we discover design simplifications that reduce complexity with little loss in the above regime. For relay quantizer design, we first consider mean-squared distortion minimization. To illustrate the unsuitability of the approach, we present an example with AWGN links and a BPSK source where the quantizer with worst mean squared distortion in a given set maximizes achievable rate. A distortion-minimizing quantizer attempts to preserve the received signal at the relay. The quantizer should instead preserve source information. In information theoretical terms, the quantizer should maximize the mutual information between the source transmission and the quantizer output conditioned on the side information at the destination subject to a rate constraint. The above conclusion, derived from information theoretical principles, is then translated to a quantizer design method for the low SNR regime. Using LDPC codes of blocklength 100000, BPSK modulation, and quantizers designed using the proposed criterion, we observe performance less than a decibel away from the achievable rate at a BER of 10^{-4}.
机译:我们提出了一种实用的半双工估计转发(EF)中继的量化器设计方法。首先,我们确定EF中继产生实质性收益的机制-SNR低且中继目标链路强。然后,我们发现在上述方案中可以减少复杂性且几乎没有损失的设计简化。对于中继量化器设计,我们首先考虑均方失真最小化。为了说明该方法的不适用性,我们给出一个带有AWGN链接和BPSK源的示例,其中给定集合中均方差最差的量化器将可实现的速率最大化。失真最小化的量化器试图将接收到的信号保留在继电器上。量化器应该保留源信息。用信息论的术语来说,量化器应该使源传输和量化器输出之间的互信息最大化,该量化取决于以速率约束为目标的目的地的辅助信息。从信息理论原理得出的以上结论随后被转换为针对低SNR机制的量化器设计方法。使用块长为100000的LDPC码,BPSK调制以及使用提出的标准设计的量化器,我们观察到在BER为10 ^ {-4}时,性能比可达到的速率低了一个分贝。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号