首页> 外文期刊>Communications, IEEE Transactions on >Hamming Distance Computation in Unreliable Resistive Memory
【24h】

Hamming Distance Computation in Unreliable Resistive Memory

机译:不可靠电阻记忆中的汉明距离计算

获取原文
获取原文并翻译 | 示例

摘要

Enabled by new storage mediums, Computation-in-Memory is a novel architecture that has shown great potential in reducing the burden of massive data processing by bypassing the communication and memory access bottleneck. Suggested by Cassuto and Crammer, allowing for ultra-fast Hamming distance computations to be performed in resistive memory with low-level conductance measurements has the potential to drastically speed up many modern machine learning algorithms. Meanwhile, Hamming distance Computation-in-Memory remains a challenging task as a result of the non-negligible device variability in practical resistive memory. In this paper, build upon the work of Cassuto and Crammer, we study memristor variability due to two distinct sources: resistance variation, and the non-deterministic write process. First, we introduce a technique for estimating the Hamming distance under resistance variation alone. Then, we propose error-detection and error-correction schemes to deal with non-ideal write process. We then combine these results to concurrently address both sources of memristor variabilities. In order to preserve the low latency property of Computation-in-Memory, all of our approaches rely on only a single vector-level conductance measurement. We use so-called inversion coding as a key ingredient in our solutions and we prove the optimality of this code given the restrictions on bit-accessible information. Finally, we demonstrate the efficacy of our approaches on the k-nearest neighbors classifier.
机译:借助新的存储介质,内存中计算是一种新颖的体系结构,它通过绕过通信和内存访问瓶颈,在减轻海量数据处理负担方面显示出巨大潜力。由Cassuto和Crammer建议,允许通过低级电导测量在电阻存储器中执行超快速汉明距离计算,有可能极大地加快许多现代机器学习算法的速度。同时,由于实际电阻式存储器中器件的可变性不可忽略,因此汉明距离在存储器中的计算仍然是一项艰巨的任务。在本文中,以Cassuto和Crammer的工作为基础,我们研究了忆阻器可变性,其归因于两个不同的来源:电阻变化和非确定性写入过程。首先,我们介绍一种仅在电阻变化下估算汉明距离的技术。然后,我们提出了错误检测和错误校正方案来处理非理想的写入过程。然后,我们结合这些结果来同时解决忆阻器变化的两个来源。为了保持内存计算的低延迟特性,我们所有的方法仅依赖于单个矢量级电导测量。我们在解决方案中使用了所谓的反转编码作为关键要素,并且由于对位可访问信息的限制,我们证明了这种编码的最优性。最后,我们证明了我们的方法在k最近邻分类器上的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号