...
首页> 外文期刊>Combustion and Flame >Enabling high compression ratio in boosted spark ignition engines: Thermodynamic trajectory and fuel chemistry effects on knock
【24h】

Enabling high compression ratio in boosted spark ignition engines: Thermodynamic trajectory and fuel chemistry effects on knock

机译:在增压火花点火发动机中实现高压缩比:热力学轨迹和燃料化学效应

获取原文
获取原文并翻译 | 示例
           

摘要

Knock remains one of the main limitations for increased internal combustion engine efficiency. Recent trends in light-duty vehicles towards downsized, boosted engines highlight the need to improve predictive knock models which incorporate contributing fuel chemistry and thermodynamic effects. Previous studies have shown the importance of end-gas thermodynamic conditions on knock onset and behavior, with relationships to fuel chemistry illustrated. However, a complete understanding of how fuels allow access to higher engine loads and the governing physics behind end-gas knock under a wide range of thermodynamic conditions is still unclear. Experiments in this work improve this understanding with the use of three fuels (1) isooctane, a low octane sensitivity (OS) fuel (2) a Co-Optima aromatic core fuel, which has similar research octane number (RON) yet significantly higher OS, and (3) propane, known for its knock resistance. Engine load sweeps are conducted with each fuel while maintaining a CA50 of 8 crank angle degrees after top dead center (degrees CA aTDC(f)). As load increases and knock onset is observed, spark is delayed to its knock limited spark advance (KLSA) allowing further increases in load until either one of two limits is reached; (1) CA50 retard limit (2) Peak cylinder pressure limit. Experiments are conducted at 40 degrees C and 90 degrees C intake temperature and at two distinct compression ratios (r(c)) 9.2:1 and 13.6:1. Two-zone zero-dimensional simulations were performed in Chemkin to extract end-gas pressure and temperature conditions through the combustion process for each experimental condition of interest. CA50 response as a function of engine load is compared for all experimental conditions and fuels, and a pressure-temperature (PT) trajectory analysis is conducted using constant volume ignition delay contours to explain the behavior of each fuel. Published by Elsevier Inc. on behalf of The Combustion Institute.
机译:敲击仍然是内燃机效率提高的主要局限之一。近期轻型车辆走向缩小的趋势,增强发动机突出了改进预测爆震模型的必要性,该模型包含促进燃料化学和热力学效应。以前的研究表明,最终气热力学条件对爆震发作和行为的重要性,具有所示的燃料化学的关系。然而,完全了解燃料如何允许在广泛的热力学条件下获得更高的发动机负荷和终端气体背后的控制物理仍然不清楚。在这项工作中的实验可通过使用三种燃料(1)异辛烷,低辛烷敏感性(OS)燃料(2)一种共同最优芳香核心燃料,其具有相似的研究辛烷值(RON),但辛烷值(ron)具有相似的研究且显着更高(3)丙烷,已知其抗抗抗性。发动机负荷扫描用每个燃料进行,同时在顶部死点(摄取Ca ATDC(F))之后保持8个曲柄角度的CA50。随着负荷增加和敲击开始,火花被延迟到其爆震有限的火花提前(KLSA),允许进一步增加负载,直到达到两个限制中的一个中的一个; (1)CA50延迟极限(2)峰缸压力限制。实验在40℃和90摄氏度的进气温度下,并以两个不同的压缩比(R(c))9.2:1和13.6:1。在Chemkin中进行双区零尺寸模拟,通过燃烧过程提取最终气体压力和温度条件,用于每个感兴趣的每个实验条件。作为所有实验条件和燃料进行比较作为发动机负荷的函数的CA50响应,并且使用恒定卷点火延迟轮廓进行压力温度(Pt)轨迹分析来解释每个燃料的行为。由elsevier公司发布代表燃烧研究所。

著录项

  • 来源
    《Combustion and Flame》 |2020年第12期|446-459|共14页
  • 作者单位

    Oak Ridge Natl Lab Fuels Engines & Emiss Res Ctr 2360 Cherahala Blvd Knoxville TN 37932 USA;

    Oak Ridge Natl Lab Fuels Engines & Emiss Res Ctr 2360 Cherahala Blvd Knoxville TN 37932 USA;

    Oak Ridge Natl Lab Fuels Engines & Emiss Res Ctr 2360 Cherahala Blvd Knoxville TN 37932 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Knock; Low temperature heat release; Compression ratio; Octane index;

    机译:敲击;低温热释放;压缩比;辛烷值指数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号