首页> 外文期刊>Combinatorica >Asymptotic enumeration of integer matrices with large equal row and column sums
【24h】

Asymptotic enumeration of integer matrices with large equal row and column sums

机译:行和列总和相等的整数矩阵的渐近枚举

获取原文
获取原文并翻译 | 示例

摘要

Let s, t, m, n be positive integers such that sm = tn. Let M(m, s; n, t) be the number of m×n matrices over {0, 1, 2, …} with each row summing to s and each column summing to t. Equivalently, M(m, s; n, t) counts 2-way contingency tables of order m×n such that the row marginal sums are all s and the column marginal sums are all t. A third equivalent description is that M(m, s; n, t) is the number of semiregular labelled bipartite multigraphs with m vertices of degree s and n vertices of degree t. When m = n and s = t such matrices are also referred to as n×n magic or semimagic squares with line sums equal to t. We prove a precise asymptotic formula for M(m, s; n, t) which is valid over a range of (m, s; n, t) in which m, n→∞ while remaining approximately equal and the average entry is not too small. This range includes the case where m, n/m, s and t/m are bounded from below.
机译:令s,t,m,n为正整数,使sm = tn。令M(m,s; n,t)是{0,1,2,…}上的m×n个矩阵的数目,每行总和为s,每列总和为t。等效地,M(m,s; n,t)计算m×n阶的2维权变表,以使行边界和均为s,列边界和均为t。第三个等价描述是M(m,s; n,t)是m个度数为s的顶点和n个度数为t的顶点的半正则标记的二元多重图的数目。当m = n和s = t时,此类矩阵也称为线总和等于t的n×n幻方或半幻方。我们证明了M(m,s; n,t)的精确渐近公式,该公式在(m,s; n,t)的范围内有效,其中m,n→∞同时保持近似相等且平均输入不太小。该范围包括m / n,n / m,s / n和t / m从下面限制的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号