首页> 外文期刊>Cognitive science >SAwSu: An Integrated Model of Associative and Reinforcement Learning
【24h】

SAwSu: An Integrated Model of Associative and Reinforcement Learning

机译:SAwSu:联想和强化学习的集成模型

获取原文
获取原文并翻译 | 示例

摘要

AbstractSuccessfully explaining and replicating the complexity and generality of human and animal learning will require the integration of a variety of learning mechanisms. Here, we introduce a computational model which integrates associative learning (AL) and reinforcement learning (RL). We contrast the integrated model with standalone AL and RL models in three simulation studies. First, a synthetic grid-navigation task is employed to highlight performance advantages for the integrated model in an environment where the reward structure is both diverse and dynamic. The second and third simulations contrast the performances of the three models in behavioral experiments, demonstrating advantages for the integrated model in accounting for behavioral data.
机译:摘要成功地解释和复制人类和动物学习的复杂性和普遍性将需要整合多种学习机制。在这里,我们介绍了一个将联想学习(AL)和强化学习(RL)集成在一起的计算模型。在三个仿真研究中,我们将集成模型与独立的AL和RL模型进行了对比。首先,在奖励结构既多样化又动态的环境中,采用合成网格导航任务来突出集成模型的性能优势。第二和第三次仿真对比了这三种模型在行为实验中的性能,证明了集成模型在解释行为数据方面的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号