首页> 外文期刊>Cluster Computing >Parallel morphologicaleural processing of hyperspectral images using heterogeneous and homogeneous platforms
【24h】

Parallel morphologicaleural processing of hyperspectral images using heterogeneous and homogeneous platforms

机译:使用异构平台和同类平台对高光谱图像进行并行形态学/神经处理

获取原文
获取原文并翻译 | 示例

摘要

The wealth spatial and spectral information available from last-generation Earth observation instruments has introduced extremely high computational requirements in many applications. Most currently available parallel techniques treat remotely sensed data not as images, but as unordered listings of spectral measurements with no spatial arrangement. In thematic classification applications, however, the integration of spatial and spectral information can be greatly beneficial. Although such integrated approaches can be efficiently mapped in homogeneous commodity clusters, low-cost heterogeneous networks of computers (HNOCs) have soon become a standard tool of choice for dealing with the massive amount of image data produced by Earth observation missions. In this paper, we develop a new morphologicaleural algorithm for parallel classification of high-dimensional (hyperspectral) remotely sensed image data sets. The algorithm’s accuracy and parallel performance is tested in a variety of homogeneous and heterogeneous computing platforms, using two networks of workstations distributed among different locations, and also a massively parallel Beowulf cluster at NASA’s Goddard Space Flight Center in Maryland.
机译:从上一代地球观测仪器可获得的丰富的空间和光谱信息已在许多应用中引入了极高的计算要求。当前大多数可用的并行技术都不将遥感数据视为图像,而是视为无空间排列的光谱测量的无序列表。但是,在主题分类应用程序中,空间和光谱信息的集成可能会非常有益。尽管可以将此类集成方法有效地映射到同质商品集群中,但低成本的异构计算机网络(HNOC)很快已成为处理地球观测任务产生的大量图像数据的首选标准工具。在本文中,我们开发了一种新的形态/神经算法,用于对高维(高光谱)遥感图像数据集进行并行分类。使用分布在不同位置的两个工作站网络,以及马里兰州NASA戈达德太空飞行中心的大规模并行Beowulf集群,在各种同质和异构计算平台中测试了该算法的准确性和并行性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号