首页> 外文期刊>Cloud Computing, IEEE Transactions on >Multi-Cloud Performance and Security Driven Federated Workflow Management
【24h】

Multi-Cloud Performance and Security Driven Federated Workflow Management

机译:多云性能和安全驱动的联合工作流管理

获取原文
获取原文并翻译 | 示例

摘要

Federated multi-cloud resource allocation for data-intensive application workflows is generally performed based on performance or quality of service (i.e., QSpecs) considerations. At the same time, end-to-end security requirements of these workflows across multiple domains are considered as an afterthought due to lack of standardized formalization methods. Consequently, divers& heterogenous domain resource and security policies cause inter-conflicts between application's security and performance requirements that lead to sub-optimal resource allocations. In this paper, we present a joint performance and security-driven federated resource allocation scheme for data-intensive scientific applications. In order to aid joint resource brokering among multi-cloud domains with diverse/heterogenous security postures, we first define and characterize a data-intensive application's security specifications (i.e., SSpecs). Then we describe an alignment technique inspired by Portunes Algebra to homogenize the various domain resource policies (i.e., RSpecs) along an application's workflow lifecycle stages. Using such formalization and alignment, we propose a near optimal cost-aware joint QSpecs-SSpecs-d riven, RSpecs-compliant resource allocation algorithm for multi-cloud computing resource domain/ location selection as well as network path selection. We implement our security formalization, alignment, and allocation scheme as a framework, viz., "OnTimeURB" and validate it in a multi-cloud environment with exemplar data-intensive application workflows involving distributed computing and remote instrumentation use cases with different performance and security requirements.
机译:用于数据密集型应用程序工作流程的联合多云资源分配通常基于服务的性能或服务质量(即,QSpecs)考虑来执行。与此同时,由于缺乏标准化的正式化方法,这些工作流的最终安全要求被视为事后寻求。因此,潜水员和异因域资源和安全策略导致应用程序的安全性和性能要求之间的冲突,从而导致次优资源分配。在本文中,我们为数据密集型科学应用提出了联合性能和安全驱动的联邦资源分配方案。为了帮助具有多样化/异因安全姿势的多云域之间的联合资源经纪,我们首先定义和表征数据密集型应用程序的安全规范(即,SSPEC)。然后,我们描述了由Portunes代数启发的对齐技术,以沿应用程序的工作流程阶段均匀化各种域资源策略(即,RSPEC)。使用这种正式化和对准,我们提出了一种近最佳成本感知的关节Qspecs-SSPECS-D RIVen,符合多云计算资源域/位置选择的RSPECS兼容资源分配算法以及网络路径选择。我们将我们的安全形式化,对齐和分配方案作为框架,viz,“onimingburb”,并在多云环境中验证,其中包含具有不同性能和安全性的分布式计算和远程仪器使用案例的示例性数据密集型应用程序工作流程要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号