首页> 外文期刊>Cloud Computing, IEEE Transactions on >Quantitative Modeling and Analytical Calculation of Elasticity in Cloud Computing
【24h】

Quantitative Modeling and Analytical Calculation of Elasticity in Cloud Computing

机译:云计算中弹性的定量建模与分析计算

获取原文
获取原文并翻译 | 示例

摘要

Elasticity is a fundamental feature of cloud computing and can be considered as a great advantage and a key benefit of cloud computing. One key challenge in cloud elasticity is lack of consensus on a quantifiable, measurable, observable, and calculable definition of elasticity and systematic approaches to modeling, quantifying, analyzing, and predicting elasticity. Another key challenge in cloud computing is lack of effective ways for prediction and optimization of performance and cost in an elastic cloud platform. The present paper makes the following significant contributions. First, we present a new, quantitative, and formal definition of elasticity in cloud computing, i.e., the probability that the computing resources provided by a cloud platform match the current workload. Our definition is applicable to any cloud platform and can be easily measured and monitored. Furthermore, we develop an analytical model to study elasticity by treating a cloud platform as a queueing system, and use a continuous-time Markov chain (CTMC) model to precisely calculate the elasticity value of a cloud platform by using an analytical and numerical method based on just a few parameters, namely, the task arrival rate, the service rate, the virtual machine start-up and shut-down rates. In addition, we formally define auto-scaling schemes and point out that our model and method can be easily extended to handle arbitrarily sophisticated scaling schemes. Second, we apply our model and method to predict many other important properties of an elastic cloud computing system, such as average task response time, throughput, quality of service, average number of VMs, average number of busy VMs, utilization, cost, cost-performance ratio, productivity, and scalability. In fact, from a cloud consumer's point of view, these performance and cost metrics are even more important than the elasticity metric. Our study in this paper has two significance. On one hand, a cloud service provider can predict its performance and cost guarantee using the results developed in this paper. On the other hand, a cloud service provider can optimize its elastic scaling scheme to deliver the best cost-performance ratio. To the best of our knowledge, this is the first paper that analytically and comprehensively studies elasticity, performance, and cost in cloud computing. Our model and method significantly contribute to the understanding of cloud elasticity and management of elastic cloud computing systems.
机译:弹性是云计算的基本特征,可以被视为云计算的一个很大的优势和一个关键的好处。云弹性中的一个关键挑战是缺乏对弹性的可量化,可观察,可观察和可分化的弹性定义和建模,量化,分析和预测弹性的系统方法的共识。云计算中的另一个关键挑战是缺乏有效的预测和优化弹性云平台的性能和成本的方法。本文提出了以下重大贡献。首先,我们在云计算中提出了一种新的,定量和正式的弹性定义,即云平台提供的计算资源匹配当前工作负载的概率。我们的定义适用于任何云平台,可以轻松测量和监控。此外,我们通过将云平台视为排队系统来开发分析模型来研究弹性,并使用连续时间马尔可夫链(CTMC)模型来使用基于分析和数值方法精确计算云平台的弹性值只需几个参数,即任务到货率,服务速度,虚拟机启动和关闭率。此外,我们正式定义了自动缩放方案,并指出我们的模型和方法可以很容易地扩展以处理任意复杂的缩放方案。其次,我们应用我们的模型和方法来预测弹性云计算系统的许多其他重要属性,如平均任务响应时间,吞吐量,服务质量,VM的平均数量,繁忙VM的平均数量,利用,成本,成本 - 性能率,生产率和可扩展性。事实上,从云消费者的角度来看,这些性能和成本度量比弹性度量更重要。我们本文的研究具有两个意义。一方面,云服务提供商可以使用本文开发的结果预测其性能和成本保证。另一方面,云服务提供商可以优化其弹性缩放方案以提供最佳的成本性能。据我们所知,这是第一论文,在云计算中分析和全面研究弹性,性能和成本。我们的模型和方法显着促进了对弹性云计算系统的云弹性和管理的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号