首页> 外文期刊>Cloud Computing, IEEE Transactions on >A Reinforcement Learning-Based Mixed Job Scheduler Scheme for Grid or IaaS Cloud
【24h】

A Reinforcement Learning-Based Mixed Job Scheduler Scheme for Grid or IaaS Cloud

机译:网格或IAAS云的基于加强学习的混合作业调度程序方案

获取原文
获取原文并翻译 | 示例

摘要

Job scheduling is a necessary prerequisite for performance optimization and resource management in the cloud computing system. Focusing on accurate scaled cloud computing environment and efficient job scheduling under Virtual Machine (VM) resource and Server Level Agreement (SLA) constraints, we introduce the architecture of cloud computing platform and optimization job scheduling scheme in this study. The system model is comprised of clearly defined separate constituent parts, including portal, job scheduler, and resources pool. By analyzing the execution process of user jobs, we designed a novel job scheduling scheme based on reinforcement learning to minimize the makespan and Average Waiting Time (AWT) under the VM resource and deadline constraints, and employ parallel multi-age parallel technologies to balance the exploration and exploitation in learning process and accelerate the convergence of Q-learning algorithm. Both simulation and real cloud platform experiment results demonstrate the efficiency of the proposed job scheduling scheme.
机译:作业调度是云计算系统中性能优化和资源管理的必要先决条件。专注于准确缩放的云计算环境和虚拟机(VM)资源和服务器级协议(SLA)约束下的高效作业调度,我们在本研究中介绍了云计算平台和优化作业调度方案的体系结构。系统模型由明确定义的单独组成部分组成,包括门户,作业计划程序和资源池。通过分析用户作业的执行过程,我们设计了一种基于加强学习的新型作业调度方案,以最小化VM资源和截止日期约束下的Mapspan和平均等待时间(AWT),并采用并行多龄行的并行技术来平衡学习过程中的探索与开发,加快Q学习算法融合。仿真和真实云平台实验结果都展示了所提出的作业调度方案的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号