首页> 外文期刊>Cloud Computing, IEEE Transactions on >A Clustering-Based Multi-Layer Distributed Ensemble for Neurological Diagnostics in Cloud Services
【24h】

A Clustering-Based Multi-Layer Distributed Ensemble for Neurological Diagnostics in Cloud Services

机译:基于聚类的多层分布式集合,用于云服务中的神经系统诊断

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the problem of minimizing data transfer between different data centers of the cloud during the neurological diagnostics of cardiac autonomic neuropathy (CAN). This problem has never been considered in the literature before. All classifiers considered for the diagnostics of CAN previously assume complete access to all data, which would lead to enormous burden of data transfer during training if such classifiers were deployed in the cloud. We introduce a new model of clustering-based multi-layer distributed ensembles (CBMLDE). It is designed to eliminate the need to transfer data between different data centers for training of the classifiers. We conducted experiments utilizing a dataset derived from an extensive DiScRi database. Our comprehensive tests have determined the best combinations of options for setting up CBMLDE classifiers. The results demonstrate that CBMLDE classifiers not only completely eliminate the need in patient data transfer, but also have significantly outperformed all base classifiers and simpler counterpart models in all cloud frameworks.
机译:本文研究了心脏自主神经病变(CAN)神经系统诊断过程中云中不同数据中心之间的数据转移问题的问题。此问题从未在文献中被考虑过。考虑用于诊断的所有分类器以前都可以完全访问所有数据,这将导致培训期间的数据传输巨大负担如果在云中部署此类分类器。我们介绍了一种新的基于聚类的多层分布式集合模型(CBMLDE)。它旨在消除需要在不同数据中心之间传输数据以进行分类器的培训。我们进行了利用来自广泛拟合数据库的数据集进行实验。我们的全面测试确定了设置CBMLDE分类器的最佳选择组合。结果表明,CBMLDE分类器不仅完全消除了患者数据传输中的需求,而且在所有云框架中也具有显着优势的所有基本分类器和更简单的对应模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号