首页> 外文期刊>Cloud Computing, IEEE Transactions on >A 3D Image Quality Assessment Method Based on Vector Information and SVD of Quaternion Matrix under Cloud Computing Environment
【24h】

A 3D Image Quality Assessment Method Based on Vector Information and SVD of Quaternion Matrix under Cloud Computing Environment

机译:基于云计算环境下的四元矩阵矩阵的3D图像质量评估方法

获取原文
获取原文并翻译 | 示例

摘要

With the increasing demands of end-users to the visual perception in three-dimension (3D) image, quality assessment for 3D imageis dominantly required as the feedback information for multimedia transmission systems. In this paper, a novel full-reference quality assessment method by considering the depth and integral color information of 3D image under cloud computing environment is proposed. Based on the property of the depth information in 3D image, the depth map is firstly separated into different planes according to the perception of human visual system (HVS). Then, after express the image pixels of every separated plane through quaternions, the structural and energy information are separated by quaternion singular value decomposition (QSVD). The distortion of structural and energy in every plane are calculated in various formulas respectively. The final result is calculated in terms of the global score, which synthesizes the structural and energy distortion scores in every individual depth plane. It should be pointed out that the chrominance information is employed in our mechanism to evaluate the color image quality because of its useful characteristic for 3D color image quality assessment, and its spatial correlation is used for calculating structural distortion through vector cross-product. Our experimental results confirm that the proposed method has achieves better performance under cloud computing environments compared with other existing 3D image quality assessment methods.
机译:随着最终用户的需求越来越多,在三维(3D)图像中的视觉感知,3D ImageIS的质量评估主要是多媒体传输系统的反馈信息。本文提出了一种新颖的全参考质量评估方法,通过考虑云计算环境下的3D图像的深度和积分颜色信息。基于3D图像中的深度信息的性质,根据人类视觉系统(HVS)的感知首先将深度图分成不同的平面。然后,在通过四半管通过四边形表达每个分离平面的图像像素之后,结构和能量信息由四元数奇异值分解(QSVD)分开。每个平面中的结构和能量的变形分别在各种公式中计算。最终结果是根据全局评分计算的,该得分在每个单独的深度平面中合成结构和能量变形分数。应该指出的是,由于其用于3D彩色图像质量评估的有用特性,可以使用色度信息来评估彩色图像质量,并且其空间相关用于通过矢量横向产品计算结构失真。我们的实验结果证实,与其他现有的3D图像质量评估方法相比,该方法在云计算环境下实现了更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号