【24h】

SVD-Based 3D Image Quality Assessment by Using Depth Information

机译:基于深度信息的基于SVD的3D图像质量评估

获取原文
获取原文并翻译 | 示例

摘要

Currently, as demonstrated in numerous researches and studies of evaluating the three-dimension (3D) image quality, two-dimension (2D) image quality assessment methods cannot be directly applied to measure the quality of 3D image. With the increasing demands of end-users to the visual perception in 3D image, it is necessary and urgent to propose efficient 3D image quality assessment methods. In this paper, a novel 3D image quality assessment method is proposed. In the proposed method, the image pixel blocks are firstly separated into different planes according to their depth values on the basis of the perception of human visual system (HVS). The singular value decomposition (SVD) mechanism is applied into different planes respectively. Then, the final results are calculated in terms of the global error, which is the distance of the distorted image deviated from the original image. To evaluate the performance of the proposed method, the popular LIVE 3D image quality database is utilized in our experiments. As shown in our experimental results, the proposed method has a better performance compared with other methods.
机译:当前,如在评估三维(3D)图像质量的众多研究和研究中所证明的那样,二维(2D)图像质量评估方法不能直接应用于测量3D图像的质量。随着最终用户对3D图像中的视觉感知的需求不断增加,提出有效的3D图像质量评估方法是必要且迫切的。本文提出了一种新颖的3D图像质量评估方法。在所提出的方法中,首先基于人类视觉系统(HVS)的感知,根据图像像素块的深度值将它们划分为不同的平面。奇异值分解(SVD)机制分别应用于不同的平面。然后,根据全局误差来计算最终结果,全局误差是失真图像与原始图像之间的距离。为了评估所提出方法的性能,我们在实验中使用了流行的LIVE 3D图像质量数据库。如我们的实验结果所示,与其他方法相比,该方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号