首页> 外文期刊>Cloud Computing, IEEE Transactions on >Predicting Workflow Task Execution Time in the Cloud Using A Two-Stage Machine Learning Approach
【24h】

Predicting Workflow Task Execution Time in the Cloud Using A Two-Stage Machine Learning Approach

机译:使用两级机器学习方法预测云中的工作流任务执行时间

获取原文
获取原文并翻译 | 示例

摘要

Many techniques such as scheduling and resource provisioning rely on performance prediction of workflow tasks for varying input data. However, such estimates are difficult to generate in the cloud. This paper introduces a novel two-stage machine learning approach for predicting workflow task execution times for varying input data in the cloud. In order to achieve high accuracy predictions, our approach relies on parameters reflecting runtime information and two stages of predictions. Empirical results for four real world workflow applications and several commercial cloud providers demonstrate that our approach outperforms existing prediction methods. In our experiments, our approach respectively achieves a best-case and worst-case estimation error of 1.6 and 12.2 percent, while existing methods achieved errors beyond 20 percent (for some cases even over 50 percent) in more than 75 percent of the evaluated workflow tasks. In addition, we show that the models predicted by our approach for a specific cloud can be ported with low effort to new clouds with low errors by requiring only a small number of executions.
机译:许多技术,例如调度和资源供应依赖于用于改变输入数据的工作流任务的性能预测。然而,这种估计难以在云中产生。本文介绍了一种用于预测云中不同输入数据的工作流任务执行时间的新型两级机器学习方法。为了实现高精度预测,我们的方法依赖于反映运行时信息的参数和两个预测阶段。四个真实世界工作流程应用程序和几个商业云提供商的经验结果表明我们的方法优于现有的预测方法。在我们的实验中,我们的方法分别实现了1.6和12.2%的最佳情况和最坏情况估计误差,而现有方法在75%以上的评估工作流程中实现超过20%的误差(甚至超过50%)任务。此外,我们表明,我们对特定云的方法预测的模型可以通过仅需要少量的执行来为具有低误差的新云来移植到新的云。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号