首页> 外文期刊>Cloud Computing, IEEE Transactions on >Achieving Privacy-Friendly Storage and Secure Statistics for Smart Meter Data on Outsourced Clouds
【24h】

Achieving Privacy-Friendly Storage and Secure Statistics for Smart Meter Data on Outsourced Clouds

机译:实现外包云上智能电表数据的隐私友好型存储和安全统计

获取原文
获取原文并翻译 | 示例

摘要

Smart meters have already been widely used for electric utilities to provide reliable power service. Since those meters keep reporting customer's energy consumption data in minute-level or even second-level, Terabyte-level big data has to be stored and analyzed for the companies. To relieve the storage and computation pressure, some companies attempt to outsource their data on the cloud. However, this exposes customer's privacy at risk, because customer's activities can be inferred from analyzing the meter readings. In this paper, we propose a privacy-friendly cloud storage (PCS) scheme and three secure cloud statistic (SCS) schemes for smart meter data on outsourced clouds. Putting these schemes together achieves three queries from the electric companies. Next, we provably analyze the privacy and the security for these schemes. Finally, we design MapReduce algorithms to show the performance for the cloud statistic.
机译:智能电表已被广泛用于电力公司,以提供可靠的电力服务。由于这些电表一直在分钟级甚至二级级别上报告客户的能耗数据,因此必须为公司存储和分析TB级的大数据。为了缓解存储和计算压力,一些公司尝试将其数据外包到云上。但是,这可以使客户的隐私受到威胁,因为可以通过分析仪表读数来推断客户的活动。在本文中,我们针对外包云上的智能电表数据提出了一种隐私友好型云存储(PCS)方案和三种安全云统计(SCS)方案。将这些方案放在一起可以实现电力公司的三个查询。接下来,我们可证明地分析了这些方案的隐私和安全性。最后,我们设计MapReduce算法以显示云统计的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号