首页> 外文期刊>Clean technologies and environmental policy >Real-time optimal spatiotemporal sensor placement for monitoring air pollutants
【24h】

Real-time optimal spatiotemporal sensor placement for monitoring air pollutants

机译:监测空气污染物的实时最佳时空传感器展示

获取原文
获取原文并翻译 | 示例

摘要

Air pollution exposure assessment involves monitoring of pollutant species concentrations in the atmosphere along with their health impact assessment on the population. Often air pollutants are monitored via stationary monitoring stations. Due to the cost of sensors and land for the installation of the sensors within an urban area as well as maintenance of a monitoring network, sensors can only be installed at a limited number of locations. The sparse spatial coverage of immobile monitors can lead to errors in estimating the actual exposure of pollutants. One approach to address these limitations is dynamic sensing, a new monitoring technique that adjusts the locations of portable sensors in real time to measure the dynamic changes in air quality. The key challenge in dynamic sensing is to develop algorithms to identify the optimal sensor locations in real time in the face of inherent uncertainties in emissions estimates and the fate and transport of air pollutants. In this paper, we present an algorithmic framework to address the challenge of sensor placement in real time, given those uncertainties. Uncertainty in the system includes location and amount of pollutants as well as meteorology leading to a stochastic optimization problem. We use the novel better optimization of nonlinear uncertain systems (BONUS) algorithm to solve these problems. Fisher information (FI) is used as the objective of the optimization. We demonstrate the capability of our novel algorithm using a case study in Atlanta, Georgia. Our real-time sensor placement algorithm allows, for the first time, determination of the optimal location of sensors under the spatial-temporal variability of pollutants, which cannot be accomplished by a stationary monitoring station. We present the dynamic locations of sensors for observing concentrations of pollutants as well as for observing the impacts of these pollutants on populations.
机译:空气污染暴露评估涉及在大气中监测污染物物种浓度以及对人口的健康影响评估。通常通过固定监测站监测空气污染物。由于传感器和土地的成本来安装城市区域内的传感器以及监控网络的维护,传感器只能安装在有限数量的位置。固定监测器的稀疏空间覆盖率可能导致估计污染物的实际暴露时的误差。解决这些限制的一种方法是动态传感,一种新的监控技术,实时调整便携式传感器的位置,以测量空气质量的动态变化。动态感测中的关键挑战是开发算法,以实时地识别最佳传感器位置,面对排放估计和空气污染物的命运和运输的固有的不确定性。在本文中,我们介绍了一种算法框架,以便在鉴于这些不确定性的实时解决传感器放置的挑战。系统中的不确定性包括污染物的位置和数量以及气象导致随机优化问题。我们使用新颖的优化非线性不确定系统(奖金)算法来解决这些问题。 Fisher信息(FI)被用作优化的目标。我们展示了我们在格鲁吉亚亚特兰大的案例研究的新算法的能力。我们的实时传感器放置算法首次允许在污染物的空间 - 时间可变性下确定传感器的最佳位置,这不能通过固定监测站完成。我们介绍了传感器的动态位置,用于观察污染物的浓度以及观察这些污染物对人群的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号