首页> 外文期刊>Circuits, systems, and signal processing >The design of genetically optimized self-organizing neural networks with polynomial and fuzzy polynomial neurons
【24h】

The design of genetically optimized self-organizing neural networks with polynomial and fuzzy polynomial neurons

机译:具有多项式和模糊多项式神经元的遗传优化自组织神经网络的设计

获取原文
获取原文并翻译 | 示例

摘要

In this study, we introduce and investigate a class of neural architectures of self-organizing neural networks (SONNs) that is based on a genetically optimized multilayer perceptron with polynomial neurons (PNs) or fuzzy polynomial neurons (FPNs), develop a comprehensive design methodology involving mechanisms of genetic optimization, and carry out a series of numeric experiments. We distinguish between two kinds of SONN architectures: (a) PN-based and (b) FPN-based SONNs. The augmented genetically optimized SONN (gSONN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one encountered in the conventional SONN. The genetic algorithm (GA)-based design procedure being applied at each layer of SONN leads to the selection of preferred nodes (PNs or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial, and a collection of the specific subset Of input variables) available within the network.
机译:在这项研究中,我们介绍并研究了一类自组织神经网络(SONN)的神经体系结构,该结构基于具有多项式神经元(PNs)或模糊多项式神经元(FPN)的基因优化多层感知器,并开发了一种综合的设计方法涉及遗传优化的机制,并进行了一系列数值实验。我们区分两种SONN架构:(a)基于PN和(b)基于FPN的SONN。与传统的SONN相比,增强的遗传优化SONN(gSONN)导致了结构上的优化结构,并具有更高的灵活性。在SONN的每一层上应用基于遗传算法(GA)的设计程序,可以选择具有特定局部特征(例如输入变量的数量,多项式的阶数和阶数)的首选节点(PN或FPN)。网络中可用的特定输入变量子集的集合)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号