首页> 外文期刊>Circuits, systems, and signal processing >New Delay-Interval-Dependent Exponential Stability for Stochastic Neural Networks with Interval Time-Varying Delay and Distributed Delay
【24h】

New Delay-Interval-Dependent Exponential Stability for Stochastic Neural Networks with Interval Time-Varying Delay and Distributed Delay

机译:具有时变时滞和分布时滞的随机神经网络的新的与时滞相关的指数稳定性

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the problem of exponential stability for a class of stochastic neural networks with interval time-varying delay and distributed delay. Based on the idea of nonuniform partitioning for the delay interval, new delay-interval-dependent stability conditions are proposed in terms of linear matrix inequalities (LMIs) by constructing novel Augmented Lyapunov-Krasovskii functionals. Some numerical examples are presented to show the effectiveness and improvement of the proposed method.
机译:研究了一类具有区间时变时滞和分布时滞的随机神经网络的指数稳定性问题。基于延迟间隔的非均匀分配思想,通过构造新颖的增强的Lyapunov-Krasovskii泛函,针对线性矩阵不等式(LMI)提出了新的依赖于延迟间隔的稳定性条件。数值算例表明了该方法的有效性和改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号