首页> 外文期刊>Circuits, systems, and signal processing >Performance and Complexity Analysis of Blind FIR Channel Identification Algorithms Based on Deterministic Maximum Likelihood in SIMO Systems
【24h】

Performance and Complexity Analysis of Blind FIR Channel Identification Algorithms Based on Deterministic Maximum Likelihood in SIMO Systems

机译:SIMO系统中基于确定性最大似然的FIR盲信道识别算法的性能和复杂性分析

获取原文
获取原文并翻译 | 示例

摘要

We analyze two algorithms that have been introduced previously for Deterministic Maximum Likelihood (DML) blind estimation of multiple FIR channels. The first one is a modification of the Iterative Quadratic ML (IQML) algorithm. IQML gives biased estimates of the channel and performs poorly at low SNR due to noise induced bias. The IQML cost function can be "denoised" by eliminating the noise contribution: the resulting algorithm, Denoised IQML (DIQML), gives consistent estimates and outperforms IQML. Furthermore, DIQML is asymptotically globally convergent and hence insensitive to the initialization. Its asymptotic performance does not reach the DML performance though. The second strategy, called Pseudo-Quadratic ML (PQML), is naturally denoised. The denoising in PQML is furthermore more efficient than in DIQML: PQML yields the same asymptotic performance as DML, as opposed to DIQML, but requires a consistent initialization. We furthermore compare DIQML and PQML to the strategy of alternating minimization w.r.t. symbols and channel for solving DML (AQML). An asymptotic performance analysis, a complexity evaluation and simulation results are also presented. The proposed DIQML and PQML algorithms can immediately be applied also to other subspace problems such as frequency estimation of sinusoids in noise or direction of arrival estimation with uniform linear arrays.
机译:我们分析了先前为多个FIR通道的确定性最大似然(DML)盲估计引入的两种算法。第一个是对迭代二次ML(IQML)算法的修改。由于噪声引起的偏置,IQML给出了信道的偏置估计,并且在低SNR下性能较差。可以通过消除噪声贡献来对IQML成本函数进行“降噪”:所得算法Denoised IQML(DIQML)给出了一致的估计值,并且优于IQML。此外,DIQML渐近全局收敛,因此对初始化不敏感。但是,其渐近性能未达到DML性能。第二种策略称为伪二次ML(PQML),是自然去噪的。与DIQML相比,PQML中的去噪比DIQML中的更有效:PQML产生与DML相同的渐近性能,但需要一致的初始化。我们进一步将DIQML和PQML与交替最小化策略进行比较。用于解决DML(AQML)的符号和通道。还给出了渐近性能分析,复杂度评估和仿真结果。所提出的DIQML和PQML算法也可以立即应用于其他子空间问题,例如噪声中正弦曲线的频率估计或具有均匀线性阵列的到达方向估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号