首页> 外文期刊>Circuits, systems, and signal processing >ICA of Noisy Music Audio Mixtures Based on Iterative Shrinkage Denoising and FastICA Using Rational Nonlinearities
【24h】

ICA of Noisy Music Audio Mixtures Based on Iterative Shrinkage Denoising and FastICA Using Rational Nonlinearities

机译:基于迭代收缩降噪和使用合理非线性的FastICA的嘈杂音乐音频混合物的ICA

获取原文
获取原文并翻译 | 示例

摘要

Blind source separation (BSS) has an extensive application prospect in many fields, and independent component analysis (ICA) is a very effective tool for solving the BSS problem. Noisy BSS/ICA, as it approaches the reality, is frequently considered in many practical applications. In this paper, we mainly discuss the "sensor" noise, adding Gaussian white noise to the music audio mixtures. To solve noisy BSS/ICA problem, we deploy denoising pre-processing before performing FastICA. Rather than traditional wavelet shrinkage, we employ a more advanced shrinkage denoising algorithm, parallel coordinate descent (PCD) iterative shrinkage based on redundant dictionary, to accomplish the denoising task. Since the classical nonlinearities (tank and gauss) used in FastICA are not the optimal ones due to their slow computational speed, we propose two novel rational nonlinearities that have faster computational speed and almost the same or better separation performance comparing with the classical ones. As they originate from Pade approximant of tanh and gauss, but the coefficients are adjusted, we name them Variant Tanh Pade (VTP) and Variant Gauss Pade (VGP), respectively.
机译:盲源分离(BSS)在许多领域都有广阔的应用前景,而独立成分分析(ICA)是解决BSS问题的非常有效的工具。接近现实的嘈杂BSS / ICA在许多实际应用中经常被考虑。在本文中,我们主要讨论“传感器”噪声,将高斯白噪声添加到音乐音频混合中。为了解决嘈杂的BSS / ICA问题,我们在执行FastICA之前部署了降噪预处理。与传统的小波收缩相比,我们采用了更高级的收缩去噪算法,即基于冗余字典的并行坐标下降(PCD)迭代收缩来完成去噪任务。由于在FastICA中使用的经典非线性(水箱和高斯)由于其计算速度较慢而并非最佳非线性,因此我们提出了两种新颖的有理非线性,它们具有更快的计算速度以及与经典非线性相比几乎相同或更好的分离性能。由于它们源自tanh和高斯的Pade近似值,但是系数经过了调整,因此我们分别将其命名为Variant Tanh Pade(VTP)和Variant Gauss Pade(VGP)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号