首页> 外文期刊>Circuits, systems, and signal processing >Neural Adaptive Compensation Control for a Class of MIMO Uncertain Nonlinear Systems with Actuator Failures
【24h】

Neural Adaptive Compensation Control for a Class of MIMO Uncertain Nonlinear Systems with Actuator Failures

机译:一类带有执行器故障的MIMO不确定非线性系统的神经自适应补偿控制

获取原文
获取原文并翻译 | 示例

摘要

A neural adaptive compensation control scheme for a class of multi-input multi-ouput (MIMO) uncertain nonlinear systems with actuator failures is proposed based on prescribed performance bound (PPB) transient performance which characterizes the convergence rate and maximum overshoot of the tracking error. RBF neural networks are used to approximate the error of plant model, the control law proposed can guarantee the asymptotic output tracking and closed-loop signal bounds. The control scheme is applied to a twin otter aircraft longitudinal nonlinear dynamics model in the presence of unknown failures. Simulation results demonstrate the effectiveness of the proposed method.
机译:针对具有致动器故障的一类多输入多输出(MIMO)不确定非线性系统,提出了一种神经适应性补偿控制方案,该方案基于规定的性能边界(PPB)瞬态性能,该性能表征了收敛速度和跟踪误差的最大过冲。利用RBF神经网络来近似工厂模型的误差,所提出的控制律可以保证渐近输出跟踪和闭环信号边界。在存在未知故障的情况下,将该控制方案应用于双水獭飞机纵向非线性动力学模型。仿真结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号