首页> 外文期刊>Circuits, systems, and signal processing >Auxiliary Model-Based Forgetting Factor Stochastic Gradient Algorithm for Dual-Rate Nonlinear Systems and its Application to a Nonlinear Analog Circuit
【24h】

Auxiliary Model-Based Forgetting Factor Stochastic Gradient Algorithm for Dual-Rate Nonlinear Systems and its Application to a Nonlinear Analog Circuit

机译:基于辅助模型的双速率非线性系统的遗忘因子随机梯度算法及其在非线性模拟电路中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the identification problem of dual-rate Hammerstein nonlinear systems. By means of the key-term separation principle, we develop a regression identification model with different input and output sampling rates. In order to promote the convergence rate of the stochastic gradient (SG) algorithm, an auxiliary model-based forgetting factor SG algorithm is derived. Finally, the proposed algorithm is applied to model a nonlinear analog circuit with dual-rate sampling and the simulation result shows the effectiveness of the algorithm.
机译:本文研究了双速率Hammerstein非线性系统的辨识问题。利用关键项分离原理,建立了具有不同输入输出采样率的回归辨识模型。为了提高随机梯度算法的收敛速度,提出了一种基于辅助模型的遗忘因子SG算法。最后,将该算法应用于双速率采样的非线性模拟电路建模,仿真结果表明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号