首页> 外文期刊>Circuits, systems, and signal processing >Cubature Information Filters Using High-Degree and Embedded Cubature Rules
【24h】

Cubature Information Filters Using High-Degree and Embedded Cubature Rules

机译:使用高程度和嵌入式Cubature规则的Cubase信息过滤器

获取原文
获取原文并翻译 | 示例

摘要

The information form of the Kalman filter (KF) is preferred over standard covariance filters in multiple sensor fusion problems. Aiming at this issue, two types of cubature information filters (CIF) for nonlinear systems are presented in this article. The two approaches, which we have named the embedded cubature information filter (ECIF) and the fifth-degree cubature information filter (FCIF), are developed from a fifth-degree cubature Kalman filter and a newly proposed embedded cubature KF. Theoretical analysis shows that the proposed filters can achieve higher level estimation accuracy than conventional information filters, such as the CIF and the extended information filter (EIF). Performance comparisons of the proposed information filters with the conventional CIF are demonstrated via two independent multisensor tracking problems. The experimental results, presented herein, demonstrate that the proposed algorithms are more reliable and accurate than the CIF.
机译:在多传感器融合问题中,与标准协方差滤波器相比,卡尔曼滤波器(KF)的信息形式更为可取。针对这个问题,本文提出了两种用于非线性系统的孵化器信息过滤器(CIF)。我们将这两种方法分别命名为嵌入式培养皿信息过滤器(ECIF)和第五级培养皿信息过滤器(FCIF),它们是从第五级培养皿卡尔曼滤波器和新提出的嵌入式培养皿KF中开发出来的。理论分析表明,与常规信息滤波器(如CIF和扩展信息滤波器(EIF))相比,所提出的滤波器可以实现更高的级别估计精度。通过两个独立的多传感器跟踪问题证明了建议的信息滤波器与常规CIF的性能比较。本文介绍的实验结果表明,提出的算法比CIF更可靠,更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号