首页> 外文期刊>Circuits, systems, and signal processing >Robust Voicing Detection and Estimation for HMM-Based Speech Synthesis
【24h】

Robust Voicing Detection and Estimation for HMM-Based Speech Synthesis

机译:基于HMM的语音合成的稳健发声检测和估计

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a robust voicing detection and estimation method for Hidden Markov model (HMM)-based speech synthesis system. Impulse-like excitation present in voiced speech is utilized for extracting the fundamental frequency. Zero-frequency filter (ZFF) is used to derive the locations of impulse excitation. The main contribution of this paper is exploitation of size of window used in ZFF for accurate voicing detection and estimation. By adaptively choosing appropriate window size, the strength of excitation for voiced speech is significantly higher compared with unvoiced speech. With suitable threshold on the strength of excitation, accurate voicing detection is performed. In this method, smooth and accurate contour is extracted by frame-wise zero-frequency filtering of speech with appropriate window size. Performance of the proposed method is compared with other existing voicing detection and estimation methods. The proposed voicing detection and estimation method is implemented in HMM-based speech synthesis system. Both objective and subjective evaluation results show that the proposed method is capable of generating good quality speech compared with HMM-based speech synthesis systems developed using voicing detection and estimation methods based on Robust algorithm for pitch tracking and Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum.
机译:针对基于隐马尔可夫模型(HMM)的语音合成系统,提出了一种鲁棒的语音检测与估计方法。发声语音中出现的类似脉冲的激励被用于提取基频。零频滤波器(ZFF)用于推导脉冲激励的位置。本文的主要贡献是开发了ZFF中用于准确发声检测和估计的窗口大小。通过自适应地选择适当的窗口大小,与清音相比,有声语音的激发强度明显更高。在适当的激励强度阈值下,可以进行准确的声音检测。在这种方法中,通过对具有适当窗口大小的语音进行逐帧零频率滤波,可以提取出平滑准确的轮廓。将该方法的性能与其他现有的语音检测和估计方法进行了比较。该语音检测和估计方法在基于HMM的语音合成系统中实现。客观评估结果和主观评估结果均表明,与基于基于鲁棒算法的语音检测和估计方法开发的基于HMM的语音合成系统相比,该方法能够产生高质量的语音,基于鲁棒算法的音调跟踪以及采用weiGHTed自适应插值的语音转换和表示光谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号