首页> 外文期刊>Circuits, Systems, and Signal Processing >Robust Voicing Detection and F_{0} Estimation for HMM-Based Speech Synthesis
【24h】

Robust Voicing Detection and F_{0} Estimation for HMM-Based Speech Synthesis

机译:基于HMM的语音合成的稳健发声检测和F_ {0}估计

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a robust voicing detection and (F_{0}) estimation method for Hidden Markov model (HMM)-based speech synthesis system. Impulse-like excitation present in voiced speech is utilized for extracting the fundamental frequency. Zero-frequency filter (ZFF) is used to derive the locations of impulse excitation. The main contribution of this paper is exploitation of size of window used in ZFF for accurate voicing detection and (F_{0}) estimation. By adaptively choosing appropriate window size, the strength of excitation for voiced speech is significantly higher compared with unvoiced speech. With suitable threshold on the strength of excitation, accurate voicing detection is performed. In this method, smooth and accurate (F_{0}) contour is extracted by frame-wise zero-frequency filtering of speech with appropriate window size. Performance of the proposed method is compared with other existing voicing detection and (F_{0}) estimation methods. The proposed voicing detection and (F_{0}) estimation method is implemented in HMM-based speech synthesis system. Both objective and subjective evaluation results show that the proposed method is capable of generating good quality speech compared with HMM-based speech synthesis systems developed using voicing detection and (F_{0}) estimation methods based on Robust algorithm for pitch tracking and Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum.
机译:本文提出了一种基于隐马尔可夫模型(HMM)的语音合成系统鲁棒的语音检测和(F_ {0})估计方法。发声语音中出现的类似脉冲的激励被用于提取基频。零频滤波器(ZFF)用于推导脉冲激励的位置。本文的主要贡献是利用ZFF中用于精确语音检测和(F_ {0})估计的窗口大小。通过自适应地选择适当的窗口大小,与清音相比,有声语音的激发强度明显更高。在适当的激励强度阈值下,可以进行准确的声音检测。在这种方法中,通过具有适当窗口大小的语音的逐帧零频率滤波来提取平滑且准确的(F_ {0})等高线。将该方法的性能与其他现有的语音检测和(F_ {0})估计方法进行了比较。在基于HMM的语音合成系统中实现了提出的语音检测和(F_ {0})估计方法。客观评估结果和主观评估结果均表明,与使用语音检测和基于鲁棒算法进行音高跟踪和语音转换的(F_ {0})估计方法开发的基于HMM的语音合成系统相比,该方法能够生成高质量的语音。使用weiGHTed频谱的自适应插值表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号