首页> 外文期刊>Circuits, systems, and signal processing >A Robust Feature Extraction Algorithm for the Classification of Acoustic Targets in Wild Environments
【24h】

A Robust Feature Extraction Algorithm for the Classification of Acoustic Targets in Wild Environments

机译:野生环境中声目标分类的鲁棒特征提取算法

获取原文
获取原文并翻译 | 示例

摘要

The acoustic recognition technology of unattended ground sensor systems applied in wild environments is faced with the challenge of complicated and strong acoustic noise, especially wind noise. Moreover, the commonly used Mel-frequency cepstral coefficients (MFCCs) are sensitive to noise interference. To resolve the problem, a robust feature extraction method, called harmonic Mel-frequency cepstral coefficients (HMFCCs), is proposed for acoustic target classification. By combining an acoustic signal's harmonic model with the MFCC method, the HMFCC has the ability to emphasize the signals emitted by the principal acoustic components of the target. In the experiment conducted for this study, three data sets are sampled under the same conditions, except for wind power levels. Then the classifier, which is trained by one of the three data sets, is used to recognize the others data sets. According to the experimental results, the HMFCC-based classification accuracies of the three data sets are higher than those of other state-of-the-art methods, indicating that HMFCC is a kind of noise-insensitive feature.
机译:在野外环境中使用的无人值守地面传感器系统的声学识别技术面临着复杂而强烈的声学噪声(尤其是风噪声)的挑战。此外,常用的梅尔频率倒谱系数(MFCC)对噪声干扰敏感。为了解决这个问题,提出了一种鲁棒的特征提取方法,称为谐波梅尔频率倒谱系数(HMFCCs),用于声学目标分类。通过将声学信号的谐波模型与MFCC方法结合,HMFCC能够增强目标的主要声学成分发出的信号。在本研究中进行的实验中,除风力水平外,在相同条件下采样了三个数据集。然后,由三个数据集之一训练的分类器用于识别其他数据集。根据实验结果,这三个数据集基于HMFCC的分类精度高于其他最新技术,表明HMFCC是一种对噪声不敏感的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号