首页> 外文期刊>Circuits, systems, and signal processing >Sub-Nyquist Sampling and Reconstruction Model of LFM Signals Based on Blind Compressed Sensing in FRFT Domain
【24h】

Sub-Nyquist Sampling and Reconstruction Model of LFM Signals Based on Blind Compressed Sensing in FRFT Domain

机译:FRFT域中基于盲压缩感知的LFM信号的亚奈奎斯特采样和重构模型

获取原文
获取原文并翻译 | 示例

摘要

A novel framework of sub-Nyquist sampling and reconstruction for linear frequency modulation (LFM) radar signals based on the theory of blind compressed sensing (BCS) is proposed. This structure takes LFM signals as a sparse linear combination under an unknown transform order in fractional Fourier transform (FRFT) domain. First, making good use of energy concentration of LFM signal in the proper FRFT domain, we determine the optimal order which meets the convergence conditions under subsampling condition. Second, discrete fractional Fourier transform (DFRFT) sparse basis is constructed according to the specific sparse FRFT domain dominated by . Third, based on the DFRFT basis dictionary, using the random demodulator and block reconstruction algorithm, a LFM signal subsampling and reconstruction system is designed in the framework of BCS theory. With this system, the unknown LFM signal in radar system can be sampled at about 1/8 of Nyquist rate without the knowledge of priori sparse basis, but still can be reconstructed with overwhelming probability. Finally, simulations are taken on verifying the feasibility and efficiency of the proposed method, the novel framework can bring a new way to subsample and reconstruct LFM signals under the environment of non-collaboration.
机译:提出了一种基于盲压缩感知(BCS)理论的线性调频(LFM)雷达信号子奈奎斯特采样与重构框架。在分数傅立叶变换(FRFT)域中,该结构将LFM信号作为未知变换顺序下的稀疏线性组合。首先,在适当的FTFT域中,充分利用LFM信号的能量集中,确定在二次采样条件下满足收敛条件的最优阶。其次,根据由主导的特定稀疏FRFT域,构造离散分数阶傅里叶变换(DFRFT)稀疏基础。第三,基于DFRFT基字典,使用随机解调器和块重构算法,在BCS理论的框架下设计了LFM信号二次采样和重构系统。有了这个系统,雷达系统中未知的LFM信号可以在不知道先验稀疏基础的情况下以Nyquist速率的大约1/8进行采样,但是仍然可以以压倒性的概率进行重构。最后,通过仿真验证了所提方法的可行性和有效性,该新框架可以为非协作环境下的LFM信号的二次采样和重构提供新的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号