首页> 外文期刊>Circuits, systems, and signal processing >Off-Grid DOA Estimation Via Real-Valued Sparse Bayesian Method in Compressed Sensing
【24h】

Off-Grid DOA Estimation Via Real-Valued Sparse Bayesian Method in Compressed Sensing

机译:压缩感知中基于实值稀疏贝叶斯方法的离网DOA估计

获取原文
获取原文并翻译 | 示例

摘要

A novel real-valued sparse Bayesian method for the off-grid direction-of-arrival (DOA) estimation is proposed in compressed sensing (CS). The off-grid model is reformulated by the second-order Taylor expansion to reduce modeling error caused by mismatch. To apply the Bayesian perspective in CS conveniently, complex data are addressed to yield a real-valued problem by utilizing a unitary transformation. By assuming that sources among snapshots are independent and share the same sparse prior, joint sparsity is exploited for DOA estimation. Specifically, a full posterior density function can be provided in the Bayesian framework. The convergence rate and convergence stability of the proposed method can be guaranteed in the iterative procedure. Simulation results show superior performance of the proposed method as compared with existing methods.
机译:提出了一种新的实值稀疏贝叶斯方法用于离网到达方向(DOA)估计。离网模型通过二阶泰勒展开来重新形成,以减少由不匹配引起的建模误差。为了方便地在CS中应用贝叶斯透视,通过使用unit变换来处理复杂数据以产生实值问题。通过假定快照中的源是独立的并且共享相同的稀疏先验,联合稀疏度可用于DOA估计。具体而言,可以在贝叶斯框架中提供完整的后验密度函数。迭代过程可以保证所提方法的收敛速度和收敛稳定性。仿真结果表明,与现有方法相比,该方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号