首页> 外文期刊>Circuits, systems, and signal processing >Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition
【24h】

Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition

机译:基于模型分解的一类输出非线性系统的递推最小二乘参数估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the parameter estimation problem of a class of output nonlinear systems and propose a recursive least squares (RLS) algorithm for estimating the parameters of the nonlinear systems based on the model decomposition. The proposed algorithm has lower computational cost than the existing over-parameterization model-based RLS algorithm. The simulation results indicate that the proposed algorithm can effectively estimate the parameters of the nonlinear systems.
机译:本文研究了一类输出非线性系统的参数估计问题,并提出了基于模型分解的非线性系统参数估计的递归最小二乘算法。与现有的基于参数化模型的RLS算法相比,该算法具有较低的计算量。仿真结果表明,该算法可以有效地估计非线性系统的参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号