首页> 外文期刊>Circuits, systems, and signal processing >A New Semiparametric Finite Mixture Model-Based Adaptive Arithmetic Coding for Lossless Image Compression
【24h】

A New Semiparametric Finite Mixture Model-Based Adaptive Arithmetic Coding for Lossless Image Compression

机译:基于新半参有限混合模型的自适应算术编码的无损图像压缩

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new approach for block-based lossless image compression by defining a new semiparametric finite mixture model-based adaptive arithmetic coding. Conventional adaptive arithmetic encoders start encoding a sequence of symbols with a uniform distribution, and they update the frequency of each symbol by incrementing its count after it has been encoded. When encoding an image row by row or block by block, conventional adaptive arithmetic encoders provide the same compression results. In addition, images are normally non-stationary signals, which means that different areas in an image have different probability distributions, so conventional adaptive arithmetic encoders which provide probabilities for the whole image are not very efficient. In the proposed compression scheme, an image is divided into non-overlapping blocks of pixels, which are separately encoded with an appropriate statistical model. Hence, instead of starting to encode each block with a uniform distribution, we propose to start with a probability distribution which is modeled by a semiparametric mixture obtained from the distributions of its neighboring blocks. The semiparametric model parameters are estimated through maximum likelihood using the expectation-maximization algorithm in order to maximize the arithmetic coding efficiency. The results of comparative experiments show that we provide significant improvements over conventional adaptive arithmetic encoders and the state-of-the-art lossless image compression standards.
机译:在本文中,我们通过定义新的基于半参数有限混合模型的自适应算术编码,提出了一种基于块的无损图像压缩的新方法。传统的自适应算术编码器开始对具有均匀分布的符号序列进行编码,并且在对每个符号进行编码后,通过增加其计数来更新每个符号的频率。当逐行或逐块编码图像时,常规自适应算术编码器提供相同的压缩结果。另外,图像通常是非平稳信号,这意味着图像中的不同区域具有不同的概率分布,因此为整个图像提供概率的常规自适应算术编码器不是很有效。在提出的压缩方案中,将图像划分为不重叠的像素块,并使用适当的统计模型分别对其进行编码。因此,我们建议从概率分布开始,而不是开始以均匀分布对每个块进行编码,该概率分布是通过从其相邻块的分布中获得的半参数混合来建模的。使用期望最大化算法通过最大似然估计半参数模型参数,以使算术编码效率最大化。比较实验的结果表明,与传统的自适应算术编码器和最新的无损图像压缩标准相比,我们提供了显着的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号