首页> 外文期刊>Circuits, systems, and signal processing >Denoising of Heart Sound Signals Using Discrete Wavelet Transform
【24h】

Denoising of Heart Sound Signals Using Discrete Wavelet Transform

机译:使用离散小波变换对心音信号进行去噪

获取原文
获取原文并翻译 | 示例

摘要

Signal denoising remains to be one of the main problems in the field of signal processing. Various signal denoising algorithms using wavelet transforms have been introduced. Wavelets show superior signal denoising performance due to their properties such as multiresolution and windowing. This study focuses on denoising of phonocardiogram (PCG) signals using different families of discrete wavelet transforms, thresholding types and techniques, and signal decomposition levels. In particular, we discuss the effect of the chosen wavelet function and wavelet decomposition level on the efficiency of the denoising algorithm. Denoised signals are compared with the original PCG signal to determine the most suitable parameters (wavelet family, level of decomposition, and thresholding type) for the denoising process. The performance of our algorithm is evaluated using the signal-to-noise ratio, percentage root-mean-square difference, and root-mean-square error. The results show that the level of decomposition and thresholding type are the most important parameters affecting the efficiency of the denoising algorithm. Finally, we compare our results with those from other studies to test and optimize the performance of the proposed algorithm.
机译:信号去噪仍然是信号处理领域中的主要问题之一。已经介绍了使用小波变换的各种信号去噪算法。小波由于其诸如多分辨率和开窗之类的特性而显示出优异的信号降噪性能。这项研究的重点是使用不同系列的离散小波变换,阈值类型和技术以及信号分解级别对心电图(PCG)信号进行降噪。特别是,我们讨论了所选的小波函数和小波分解级别对去噪算法效率的影响。将经过降噪的信号与原始PCG信号进行比较,以确定最适合降噪过程的参数(小波族,分解级别和阈值类型)。使用信噪比,均方根差百分比和均方根误差来评估我们算法的性能。结果表明,分解水平和阈值类型是影响去噪算法效率的最重要参数。最后,我们将我们的结果与其他研究的结果进行比较,以测试和优化所提出算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号