首页> 外文期刊>Circuits, systems, and signal processing >An Improved Denoising Model Based on the Analysis K-SVD Algorithm
【24h】

An Improved Denoising Model Based on the Analysis K-SVD Algorithm

机译:基于分析K-SVD算法的改进去噪模型

获取原文
获取原文并翻译 | 示例

摘要

Denoising models play an important role in various applications, such as signal denoising. Recently, the analysis K- singular-value decomposition (SVD) (AK-SVD) algorithm has emerged as an efficient dictionary learning algorithm derived from the analysis sparse model, which has achieved promising performance in various problems. In this paper, we propose a new method that uses AK-SVD for signal denoising. Specifically, we divide input signals into redundant signal segments, which are used to generate denoised segments and train the analysis dictionary using AK-SVD. The maximum a posteriori estimator, which is defined as the minimizer of a global penalty term, is used to integrate multiple local denoised segments to attain the global denoised signals. Furthermore, the basis functions of the denoised signal are constructed based on the previously built analysis dictionary. Numerical experiments demonstrate that the proposed method can outperform the existing state-of-the-art denoising approaches.
机译:去噪模型在各种应用中起着重要作用,例如信号去噪。最近,分析K奇异值分解(SVD)(AK-SVD)算法已经成为一种有效的字典学习算法,该算法是从分析稀疏模型派生而来的,在各种问题上都取得了令人鼓舞的性能。在本文中,我们提出了一种使用AK-SVD进行信号降噪的新方法。具体来说,我们将输入信号分为冗余信号段,这些信号段用于生成去噪段,并使用AK-SVD训练分析字典。最大后验估计器被定义为全局惩罚项的最小化器,用于对多个局部去噪段进行积分以获得全局去噪信号。此外,基于先前建立的分析字典来构造去噪信号的基本函数。数值实验表明,该方法可以胜过现有的最新去噪方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号