首页> 外文期刊>Circuits, systems, and signal processing >A Variable Step-Size Strategy Based on Error Function for Sparse System Identification
【24h】

A Variable Step-Size Strategy Based on Error Function for Sparse System Identification

机译:基于误差函数的变步长策略稀疏系统识别

获取原文
获取原文并翻译 | 示例

摘要

The well-known reweighted zero-attracting least mean square algorithm (RZA-LMS) has been effective for the estimation of sparse system channels. However, the RZA-LMS algorithm utilizes a fixed step size to balance the steady-state mean square error and the convergence speed, resulting in a reduction in its performance. Thus, a trade-off between the convergence rate and the steady-state mean square error must be made. In this paper, utilizing the nonlinear relationship between the step size and the power of the noise-free prior error, a variable step-size strategy based on an error function is proposed. The simulation results indicate that the proposed variable step-size algorithm shows a better performance than the conventional RZA-LMS for both the sparse and the non-sparse systems.
机译:众所周知的加权零吸引最小均方算法(RZA-LMS)已有效用于稀疏系统信道的估计。但是,RZA-LMS算法利用固定的步长来平衡稳态均方误差和收敛速度,从而导致其性能下降。因此,必须在收敛速度和稳态均方误差之间进行权衡。本文利用步长与无噪声先验误差的幂之间的非线性关系,提出了一种基于误差函数的可变步长策略。仿真结果表明,无论是稀疏系统还是非稀疏系统,所提出的可变步长算法均具有优于常规RZA-LMS的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号