首页> 外文期刊>Circuits, systems, and signal processing >Block Matching Video Compression Based on Sparse Representation and Dictionary Learning
【24h】

Block Matching Video Compression Based on Sparse Representation and Dictionary Learning

机译:基于稀疏表示和字典学习的块匹配视频压缩

获取原文
获取原文并翻译 | 示例

摘要

This work presents a video compression method based on sparse representation and dictionary learning algorithms. The proposed scheme achieves superb rate-distortion performance and decent subjective quality, compared to modern standards, especially at low bit-rates. Different from similar works, sparse representation is employed here for both intra-frame and block matching inter-frame motion information. Dividing video frames to reference and current frames, motion vectors and motion compensation residuals of current frames are estimated in regard to reference frames. The sparse codes of reference frames and motion compensation residuals are obtained using learned dictionaries, entropy-coded, and stored or sent to the receiver along with the coded motion field. In the receiver, after decoding the sparse codes and motion vectors, the reference frames and residuals are reconstructed employing the same learned dictionary and the current frames are recovered using the reference frames and motion fields. In the proposed scheme, the Iterative Least Square Dictionary Learning Algorithm (ILS-DLA) and K-SVD dictionary building methods are employed in the DCT domain. The compression rate and quality of the method based on the two dictionary learning algorithms are compared to each other and to H.264/AVC and HEVC modern standards. The results based on PSNR and SSIM criteria show that the proposed approach presents superior performance respect to H.264/AVC and even HEVC for higher bit-rates of QCIF video format, and the K-SVD learning algorithm performs slightly better than the ILS-DLA for the purpose.
机译:这项工作提出了一种基于稀疏表示和字典学习算法的视频压缩方法。与现代标准相比,所提出的方案实现了极好的速率失真性能和不错的主观质量,尤其是在低比特率下。与类似的作品不同,这里对于帧内和块匹配的帧间运动信息都采用稀疏表示。将视频帧划分为参考帧和当前帧,针对参考帧估计当前帧的运动矢量和运动补偿残差。参考帧和运动补偿残差的稀疏代码是使用学习的字典获得的,进行熵编码,并与编码的运动场一起存储或发送到接收器。在接收机中,在对稀疏码和运动矢量进行解码之后,使用相同的学习词典来重构参考帧和残差,并使用参考帧和运动场来恢复当前帧。在提出的方案中,在DCT域中采用了迭代最小二乘字典学习算法(ILS-DLA)和K-SVD字典构建方法。将基于两种字典学习算法的方法的压缩率和质量相互比较,并与H.264 / AVC和HEVC现代标准进行比较。基于PSNR和SSIM标准的结果表明,对于更高的QCIF视频格式比特率,该方法相对于H.264 / AVC甚至HEVC均具有出色的性能,并且K-SVD学习算法的性能略优于ILS- DLA的目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号