首页> 外文期刊>Circuits, systems, and signal processing >Sparse Approximate Reconstruction Decomposed by Two Optimization Problems
【24h】

Sparse Approximate Reconstruction Decomposed by Two Optimization Problems

机译:由两个优化问题分解的稀疏近似重构

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel sparse signal reconstruction method aiming to directly minimize -quasinorm. Based on the smoothed -quasinorm, we show that there exists an unconstrained optimization problem such that both this problem and the basis pursuit problem are subproblems of the minimization problem. Moreover, we can obtain a sparse solution to the minimization by solving these two subproblems. In addition, we establish the relation between solutions to the minimization and the least square solutions of a linear system. Finally, we present some numerical experiments to illustrate our results.
机译:我们提出了一种新颖的稀疏信号重构方法,旨在直接最小化-quasinorm。基于平滑的拟三角函数,我们表明存在一个无约束的优化问题,使得该问题和基本追求问题都是最小化问题的子问题。而且,通过解决这两个子问题,我们可以获得最小化的稀疏解。另外,我们建立了线性系统的最小化解与最小二乘解之间的关系。最后,我们提出一些数值实验来说明我们的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号