首页> 外文期刊>Circuits, systems, and signal processing >Robust Centralized and Weighted Measurement Fusion Kalman Predictors with Multiplicative Noises, Uncertain Noise Variances, and Missing Measurements
【24h】

Robust Centralized and Weighted Measurement Fusion Kalman Predictors with Multiplicative Noises, Uncertain Noise Variances, and Missing Measurements

机译:具有乘法噪声,不确定噪声方差和丢失测量的鲁棒集中式加权加权融合卡尔曼预测器

获取原文
获取原文并翻译 | 示例

摘要

For multisensor uncertain systems with mixed uncertainties, including multiplicative noises in state and process noise transition matrices, uncertain-variance multiplicative and additive white noises, and missing measurements, this paper addresses the problem of designing robust centralized fusion (CF) and weighted measurement fusion (WMF) Kalman predictors. By introducing fictitious noises, the system under study is converted into a system with only uncertain noise variances. According to the minimax robust estimation principle, which is based on the worst-case system with conservative upper bounds of uncertain noise variances, the robust CF and WMF time-varying Kalman predictors are presented in a unified framework. Using the Lyapunov equation, the robustness of these predictors is proven in the sense that the actual prediction error variances are guaranteed to have the corresponding minimal upper bounds for all admissible uncertainties. Using an information filter, they are proven to have the same robust and actual accuracies. The complexity analysis shows that when the number of sensors is larger, the WMF algorithm more significantly reduces the computational burden than the CF algorithm. The corresponding robust fused steady-state Kalman predictors are also presented. The three modes of convergence in a realization among the time-varying and steady-state robust fused Kalman predictors are proposed and proven using the dynamic error system analysis method. Two simulation examples, autoregressive moving average signal processing and an uninterruptible power system, demonstrate the effectiveness of the proposed methods.
机译:对于具有混合不确定性的多传感器不确定性系统,包括状态和过程噪声转换矩阵中的乘法噪声,不确定性方差乘法和加性白噪声以及缺少度量,本文解决了设计鲁棒集中式融合(CF)和加权度量融合( WMF)卡尔曼预测变量。通过引入虚拟噪声,将正在研究的系统转换为仅具有不确定噪声方差的系统。根据基于具有不确定噪声方差的保守上限的最坏情况系统的minimax鲁棒估计原理,在统一框架中提出了鲁棒的CF和WMF时变Kalman预测器。使用Lyapunov方程,就可以保证所有预测不确定性的实际预测误差方差都具有相应的最小上限,这证明了这些预测变量的鲁棒性。使用信息过滤器,事实证明它们具有相同的鲁棒性和实际精度。复杂度分析表明,当传感器数量较大时,与CF算法相比,WMF算法可显着减少计算负担。还介绍了相应的鲁棒融合稳态卡尔曼预测器。提出并实现了时变和稳态鲁棒融合卡尔曼预测器之间的三种收敛方式,并使用动态误差系统分析方法进行了证明。两个仿真示例,自回归移动平均信号处理和不间断电源系统,证明了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号