首页> 外文期刊>Circuits, systems, and signal processing >Low-Power, Low-Area Multi-level 2-D Discrete Wavelet Transform Architecture
【24h】

Low-Power, Low-Area Multi-level 2-D Discrete Wavelet Transform Architecture

机译:低功耗,低面积多级二维离散小波变换架构

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces an efficient, low-power, low-area multi-level 2-D discrete Haar wavelet transform (2-D DHWT) architecture. The proposed architecture consists of four add/subtract elements, register bank, three multiplexers and a buffer memory. All or fractions of theN-stage register are used to perform row-column image transposition for every 2-D DHWT decomposition level. A fixed size block memory of N/2 x N/2-sample is used to store low-low frequency band to perform multi-level 2-D DHWT decomposition, except for the first level where no block memory is used. For synthesis results, the proposed architecture outperforms similar architectures in hardware usage, power consumption and speed. Also, it is found that the power delay product of the proposed architecture is less than 1 (mW x mu s) compared with up to 1.9 (mW x mu s) for cascaded architecture. Furthermore, an up to 209MHzprocessing speed is achieved which enables a three-level 2-DDHWTdecomposition of a 256x256-pixel image to be performed within 0.4ms.
机译:本文介绍了一种高效,低功耗,低面积的多级二维离散Haar小波变换(2-D DHWT)体系结构。所提出的体系结构由四个加/减元素,寄存器组,三个多路复用器和一个缓冲存储器组成。 N级寄存器的全部或部分用于对每个2-D DHWT分解级别执行行列图像转置。 N / 2 x N / 2样本的固定大小的块存储器用于存储低-低频带,以执行多级2-D DHWT分解,但不使用块存储器的第一级除外。对于综合结果,所提出的体系结构在硬件使用,功耗和速度方面均优于相似的体系结构。而且,发现所提出的架构的功率延迟乘积小于1(mW xμs),而级联架构则高达1.9(mW xμs)。此外,实现了高达209MHz的处理速度,从而可以在0.4ms内执行256x256像素图像的三级2-DDHWT分解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号