首页> 外文期刊>Circuits, systems and signal processing >Observer Design for One-sided Lipschitz Uncertain Descriptor Systems with Time-varying Delay and Nonlinear Uncertainties
【24h】

Observer Design for One-sided Lipschitz Uncertain Descriptor Systems with Time-varying Delay and Nonlinear Uncertainties

机译:单面Lipschitz不确定描述系统的观测器设计,具有时变延迟和非线性不确定性

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates observer design for a class of one-sided Lipschitz descriptor systems with time-varying delay and uncertain parameters. In order to provide a general framework for large-scale systems, the paper considers uncertainties, nonlinearities, disturbance and time-varying delay at both output and state. By constructing Lyapunov-Krasovskii functional, and using the one-sided Lipschitz condition and the quadratic inner-boundedness inequality, we establish the sufficient condition which guarantees that the observer error dynamics is asymptotically stable, and the proposed observer ensures the L2 gain bounded by a scalar.. Then, we change the condition into a strict matrix inequality condition. Furthermore, based on the obtained results, we establish the linear matrix inequality-based condition to ensure the asymptotically convergence of state estimation error and to accomplish robustness against L2 norm bounded disturbances by utilizing change of variables. We propose the computing method of observer gain. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed method.
机译:本文调查了一类单面Lipschitz描述符系统的观测器设计,具有时变延迟和不确定参数。为了为大型系统提供一般框架,本文认为在输出和状态下的不确定性,非线性,干扰和时变延迟。通过构建Lyapunov-Krasovskii功能,并使用单面嘴唇条件和二次内部边界不等式,我们建立了足够的条件,保证观察者误差动态是渐近稳定的,并且所提出的观察者确保了L2增益界定的标量..然后,我们将条件更改为严格的矩阵不等式状况。此外,基于所得的结果,我们建立基于线性矩阵的不等式条件,以确保状态估计误差的渐近收敛,并通过利用变量的变化来实现对L2范围限制干扰的鲁棒性。我们提出了观察者增益的计算方法。最后,提供了模拟示例以证明所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号