首页> 外文期刊>Circuits, systems and signal processing >Adaptive Sparse Quantization Kernel Least Mean Square Algorithm for Online Prediction of Chaotic Time Series
【24h】

Adaptive Sparse Quantization Kernel Least Mean Square Algorithm for Online Prediction of Chaotic Time Series

机译:适应性稀疏量化内核最小均方算法用于混沌时间序列的在线预测

获取原文
获取原文并翻译 | 示例

摘要

Kernel leastmean square (KLMS) algorithm is a popular method for time series online prediction. It has the advantages of good robustness, low computational complexity, model simplicity and online learning ability. Unfortunately, as input data grows, the dictionary size increases and the computational complexity raises significantly. In addition, how to improve the adaptability in time-varying environments with noise is also one of the main challenges. Therefore, we propose an improved KLMS algorithm from sparse perspective in response to the above problems, called adaptive sparse quantization kernel least mean square (ASQ-KLMS) algorithm. In the new model, sequential outlier criterion for sparsification and weights adaptive adjustment are combined with coherence criterion and quantization to form ASQ-KLMS algorithm. Firstly, it makes full use of effective information and ignores the interference of abnormal information to obtain a more accurate and compact dictionary. Then, a good balance between algorithm efficiency and accuracy can be achieved by controlling the choice of parameters. In addition, it can adaptively adjust weights in time-varying environment. At last, the Lorenz chaotic time series, the ENSO chaotic time series and the Beijing PM2.5 chaotic time series are used to prove the reliability of the ASQ-KLMS algorithm.
机译:内核排名总方(KLMS)算法是时间序列在线预测的流行方法。它具有良好的鲁棒性,低计算复杂性,模型简单和在线学习能力的优点。不幸的是,随着输入数据的增长,字典大小的增加,计算复杂性显着提升。此外,如何提高时变环境中的适应性,噪音也是主要挑战之一。因此,我们提出了一种改进的KLMS算法,响应于上述问题,称为自适应稀疏量化内核最小均方(ASQ-KLMS)算法。在新模型中,稀疏和权重自适应调整的顺序异常值标准与一致性标准和量化相结合,以形成ASQ-KLMS算法。首先,它充分利用有效信息并忽略异常信息的干扰,以获得更准确和紧凑的字典。然后,可以通过控制参数的选择来实现算法效率和准确度之间的良好平衡。此外,它可以自适应地调整时变环境中的权重。最后,洛伦茨混沌时间序列,恩索混沌时间序列和北京PM2.5混沌时间序列用于证明ASQ-KLMS算法的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号