首页> 外文期刊>Circuits, systems and signal processing >A Novel Closed-Form Estimator for AOA Target Localization Without Prior Knowledge of Noise Variances
【24h】

A Novel Closed-Form Estimator for AOA Target Localization Without Prior Knowledge of Noise Variances

机译:一种新颖的闭合形式估计,用于AOA目标本地化,而无需噪声差异的先验知识

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of target localization using angle-of-arrival (AOA) measurements when the prior information of the AOA measurement noise variance is unavailable. At first, a maximum likelihood estimator (MLE) and the Cramer-Rao lower bound are derived for the case where the unknown noise variance is a function of the target-to-sensor distance. Then, a novel estimator is proposed to obtain a closed-form solution without the knowledge of noise variance. The proposed estimator can efficiently improve the localization performance by fully exploiting the desirable advantages of the instrumental variable (IV) method and the set of generalized pseudolinear equation. The simulation results show the superior performance of the proposed estimator compared with the MLE, the IV estimator and the pseudolinear estimator.
机译:本文在AOA测量噪声方差的先前信息不可用时,使用到达角度(AOA)测量来解决目标本地化问题。 首先,为未知噪声方差是目标到传感器距离的函数的情况导出最大似然估计器(MLE)和克拉默 - RAO下限。 然后,提出了一种新颖的估计器,以获得闭合形式的解决方案而不知道噪声方差。 所提出的估计器可以通过充分利用乐器变量(iv)方法和一组广义伪型方程的所需优点来有效地改善定位性能。 仿真结果表明,与MLE,IV估计器和伪估计器相比,所提出的估计的卓越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号