首页> 外文期刊>Circuits, systems and signal processing >Passivity Analysis of Fractional-Order Neural Networks with Time-Varying Delay Based on LMI Approach
【24h】

Passivity Analysis of Fractional-Order Neural Networks with Time-Varying Delay Based on LMI Approach

机译:基于LMI方法的分数延迟分数阶神经网络的传承性分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of passivity analysis of fractional-order neural networks (FONNs) with a time-varying delay. By using the Razumikhin fractional-order theorem, we first derive an improved sufficient criterion for asymptotic stability of FONNs with a bounded time-varying delay. Then, based on the proposed stability criterion and some auxiliary properties of fractional calculus, a delay-dependent condition is established to ensure the passivity of the considered system. These conditions are order-dependent and in the form of linear matrix inequalities, which therefore can be efficiently solved in polynomial time by using the existing convex algorithms. Some numerical examples are provided to show the effectiveness of the obtained results.
机译:本文用时变延迟研究了分数阶神经网络(FONNS)的传奇分析问题。通过使用Razumikhin分数定理定理,我们首先通过有界时变延迟来获得FONN的渐近稳定性的提高了足够的渐近稳定性标准。然后,基于所提出的稳定性标准和一些分数微积分的辅助性能,建立延迟依赖性条件,以确保所考虑的系统的钝化性。这些条件是顺序依赖性的,并且以线性矩阵不等式的形式,因此可以通过使用现有的凸算法在多项式时间中有效地解决。提供了一些数值例子以显示所得结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号