首页> 外文期刊>Circuits, systems and signal processing >Novel Method for Non-stationary Signals Via High-Concentration Time-Frequency Analysis Using SSTFrFT
【24h】

Novel Method for Non-stationary Signals Via High-Concentration Time-Frequency Analysis Using SSTFrFT

机译:使用SSTFRFT通过高浓度时频分析的非静止信号的新方法

获取原文
获取原文并翻译 | 示例

摘要

The short-time fractional Fourier transform (STFrFT) is beneficial for addressing non-stationary signals in many application settings. However, the STFrFT algorithm fails to obtain a high time-frequency (TF) concentration because of the uncertainty principle. To resolve these problems, we introduce a new algorithm that is referred to as the SSTFrFT, which is a combination of the synchroextracting transform and STFrFT. The main principle of this algorithm is to establish a synchroextracting operator based on the STFrFT and then to extract the TF coefficient of the ridgeline position in the TF distribution to improve the concentration. Using numerical simulations with two examples (linear frequency modulation signal and nonlinear frequency modulation signal), we illustrate how the algorithm can be useful in improving concentration. The instantaneous frequency estimation and energy distribution description are more accurate than traditional methods, such as the short-time Fourier transform, Wigner Ville distribution, synchrosqueezed transform, and STFrFT. Furthermore, we apply the algorithm to identify the frequency curve generated by the target's motion from Ice Multiparameter Imaging X-Band radar echo data from the sea clutter background. The test results of the SSTFrFT method that we developed can accurately distinguish moving targets and sea clutter, which suggest the possible utility of this approach for detection and motion characteristics of marine moving targets.
机译:短时分数傅里叶变换(StFRFT)有利于解决许多应用程序设置中的非静止信号。然而,由于不确定原理,STFRFT算法未能获得高时间频率(TF)浓度。为了解决这些问题,我们介绍了一种被称为SSTFRFT的新算法,它是同步提出的变换和StFRFT的组合。该算法的主要原理是基于STFRFT建立同步置入操作员,然后在TF分布中提取脊曲线位置的TF系数,以提高浓度。使用具有两个示例的数值模拟(线性频率调制信号和非线性频率调制信号),我们说明了算法如何在提高浓度方面是有用的。瞬时频率估计和能量分布描述比传统方法更准确,例如短时傅里叶变换,Wigner Ville分布,同步性转换和StFRFT。此外,我们应用该算法来识别目标从海杂波背景中识别目标的运动产生的频率曲线x波段雷达回波数据。我们开发的SSTFRFT方法的测试结果可以准确地区分移动目标和海洋杂波,这表明这种方法可以效用海洋移动目标的检测和运动特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号