首页> 外文期刊>Circuits, systems, and signal processing >An Off-Grid Block-Sparse Bayesian Method for Direction of Arrival and Polarization Estimation
【24h】

An Off-Grid Block-Sparse Bayesian Method for Direction of Arrival and Polarization Estimation

机译:一种离网块稀疏贝叶斯方法,用于到达方向和极化估计

获取原文
获取原文并翻译 | 示例

摘要

The problem of DOA and polarization parameter estimation is considered in this paper from a perspective of sparse reconstruction. We present a novel off-grid hierarchical block-sparse Bayesian method for DOA and polarization parameter estimation to improve the estimation accuracy. Firstly, an off-grid model is formulated via the first-order Taylor expansion of the source steering vector. Then, a block-sparse vector is constructed based on sparse Bayesian inference, on which a two-layer hierarchical prior is imposed to promote block sparsity and internal sparsity simultaneously. Finally, the variables and model parameters are updated alternately by adopting the variational Bayesian approximation. In addition, the Cramer-Rao bound for DOA and polarization estimation, the convergence property and the computational complexity analysis of the proposed method are derived. Compared with the existing sparse reconstruction methods and the traditional subspace-based methods, the proposed method can achieve higher estimation accuracy. Simulation results demonstrate the effectiveness and notable performance of the proposed method.
机译:本文以稀疏重建的角度考虑了DOA和偏振参数估计的问题。我们为DOA和偏振参数估计提出了一种新的离网分层块稀疏贝叶斯方法,以提高估计精度。首先,通过源转向载体的一阶泰勒膨胀制定了一个离网模型。然后,基于稀疏贝叶斯推理构建块稀疏载体,在该稀疏贝叶斯推理,其上施加了双层分层以同时促进阻挡稀疏性和内部稀疏性。最后,通过采用变分贝叶斯近似来交替更新变量和模型参数。另外,推导出用于DOA的Cramer-Rao,偏振估计,收敛性和所提出的方法的计算复杂性分析。与现有的稀疏重建方法和传统的基于子空间的方法相比,所提出的方法可以实现更高的估计精度。仿真结果表明了该方法的有效性和显着性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号