首页> 外文期刊>Circuits, systems, and signal processing >Energy Efficient Machine Learning Technique for Smart Data Collection in Wireless Sensor Networks
【24h】

Energy Efficient Machine Learning Technique for Smart Data Collection in Wireless Sensor Networks

机译:无线传感器网络中智能数据收集的节能机械学习技术

获取原文
获取原文并翻译 | 示例

摘要

Performance-centric automated system plays a vital role in next-generation wireless networks. With reduction in size and cost, sensor devices have led to envision a world of ubiquitous wireless sensor networks. Inherent behavior of resource-constrained sensors results in energy-consuming hot spots (such as communication overhead, severe packet collision, network congestion and packet loss) causing premature death of sensor nodes and entire network. In this paper, a novel 'Monkey Tree Search-based Location-Aware Smart Collector (MTS_LASC)' that exploits fauna inspired Monkey Tree Search (MTS) behavioral model is explored. The MTS_LASC is an extremely dynamic and fascinating phenomenon comprising distributed smart collectors and a centralized meta-heuristic MTS engine used for solving hard and complex problem. The distributed smart collector is embedded with a client MTS module. It is capable of analyzing, categorizing and aggregating data collected from sensors and disseminating them to the sink using fuzzy inference mechanism, whereas the centralized MTS engine exploits meta-heuristic search to facilitate comprehensive situation awareness through energy-efficient route among multiple paths for crucial decision making in Internet of Things-based applications. Simulation results reveal promising gains with higher delivery ratio by significantly reducing redundant packet transmission and maintaining fidelity through data aggregation. Performance analysis shows that MTS_LASC remains stable even in high traffic-constrained setup as energy degrades more slowly resulting in prolonged network lifetime. By improving the life prospects of the sensor network commendably, the proposed scheme reflects high potential on practical implementation.
机译:以性能为自动化系统在下一代无线网络中起着重要作用。随着尺寸和成本的降低,传感器设备导致了普遍存在的无线传感器网络的世界。资源约束传感器的固有行为导致能耗的热点(如通信开销,严重的分组碰撞,网络拥塞和数据包丢失),导致传感器节点和整个网络过早死亡。在本文中,探讨了一种新颖的“基于猴树搜索的位置感知智能收集器(MTS_LASC)”,该集团探讨了动植物的灵感猴子树搜索(MTS)行为模型。 MTS_LAS商是一种极其动态和迷人的现象,包括分布式智能收集器和用于解决艰苦和复杂问题的集中式元启发式MTS引擎。分布式智能收集器嵌入客户MTS模块。它能够分析,分析和聚合从传感器收集的数据,并使用模糊推理机制将它们传播到水槽,而集中式MTS发动机利用元启发式搜索来促进通过多个路径之间的节能路径来促进综合局面意识在基于事物的应用程序中制作。仿真结果显示通过显着减少冗余分组传输并通过数据聚合维护保真度来提高交付比率更高。性能分析表明,即使在高流量约束的设置中,MTS_LASC也保持稳定,因为能量降低更慢导致长时间的网络寿命。通过提高传感器网络的寿命前景,拟议的计划反映了实际实施的高潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号