首页> 外文期刊>Circuits, systems, and signal processing >An Intelligence-Based Recurrent Learning Scheme for Optimal Channel Allocation and Selection in Device-to-Device Communications
【24h】

An Intelligence-Based Recurrent Learning Scheme for Optimal Channel Allocation and Selection in Device-to-Device Communications

机译:基于智能的经常性学习方案,用于设备到设备通信中的最佳信道分配和选择

获取原文
获取原文并翻译 | 示例

摘要

Decentralized mobile user communications rely on sensing and signal processing that are aided by fusion centers. Device-to-device (D2D) communications form the backend network for facilitating mobile user communication through the appropriate signal sensing and channel selection. The sensing and processing of tightly coupled channels ensure seamless uninterrupted communications with fewer outages. An imbalance in channel allocation and selection increases the gap between communication networks and signal processing systems. Unattended channel allocation and selection result in delayed communications and additional power exploitation with less reliability. This paper introduces an intelligence-based recurrent learning (IRL) scheme for optimal channel allocation and selection for mobile users' D2D communication. The objective of this paper is to select a delay-controlled channel satisfying both the data rate and power control requirements in the channel allocation. The allocated channel is analyzed through a responsive linear system transformation for its power, data rate, and time constraints in a recurrent manner. The intelligent learning technique evaluates the consistency of the channel based on a recurrent analysis. The outcome of the analysis is the selection of an optimal channel from the allocated channels that satisfies the objective and channel policies. Synchronized channel allocation achieves power-controlled communications in a cooperative manner under controlled interference. The proposed IRL minimizes D2D communication delay, transmits the power requirement and outage, and improves throughput with better reliability.
机译:分散的移动用户通信依赖于融合中心辅助的传感和信号处理。设备到设备(D2D)通信形成后端网络,以便通过适当的信号感测和频道选择促进移动用户通信。紧密耦合通道的感测和处理确保了与更少的中断无缝的通信。信道分配和选择的不平衡增加了通信网络和信号处理系统之间的间隙。无人值守的信道分配和选择导致延迟通信和额外的功率开发,可靠性较少。本文介绍了一种基于智能的经常性学习(IRL)方案,用于最佳通道分配和用于移动用户D2D通信的选择。本文的目的是选择延迟控制的信道,满足信道分配中的数据速率和功率控制要求。通过响应的线性系统变换进行分配的通道,以其电力,数据速率和时间约束以经常性方式进行分析。智能学习技术基于经常性分析评估信道的一致性。分析的结果是从满足目标和频道策略的分配信道选择最佳信道。同步信道分配以受控干扰为单项方式实现功率控制通信。所提出的IRL最大限度地减少了D2D通信延迟,传输功率要求和中断,并提高了具有更好可靠性的吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号