首页> 外文期刊>Circuits, systems, and signal processing >Time-Frequency Feature Fusion for Noise Robust Audio Event Classification
【24h】

Time-Frequency Feature Fusion for Noise Robust Audio Event Classification

机译:噪声强大音频事件分类的时频特征融合

获取原文
获取原文并翻译 | 示例

摘要

This paper explores the use of three different two-dimensional time-frequency features for audio event classification with deep neural network back-end classifiers. The evaluations use spectrogram, cochleogram and constant-Q transform-based images for classification of 50 classes of audio events in varying levels of acoustic background noise, revealing interesting performance patterns with respect to noise level, feature image type and classifier. Evidence is obtained that two well-performing features, the spectrogram and cochleogram, make use of information that is potentially complementary in the input features. Feature fusion is thus explored for each pair of features, as well as for all tested features. Results indicate that a fusion of spectrogram and cochleogram information is particularly beneficial, yielding an impressive 50-class accuracy of over 96% in 0 dB SNR and exceeding 99% accuracy in 10 dB SNR and above. Meanwhile, the cochleogram image feature is found to perform well in extreme noise cases of -5 dB and -10 dB SNR.
机译:本文探讨了使用深度神经网络后端分类器的音频事件分类的三种不同二维时频特征。评估使用基于频谱图,划分和恒定的Q变换的图像,用于分类50类的声学背景噪声级别的50类音频事件,揭示关于噪声级别的有趣性能模式,特征图像类型和分类。获得了两个性能良好的特征,频谱图和科学图,利用在输入特征中可能互补的信息。因此,针对每对特征以及所有测试功能探索特征融合。结果表明,谱图和侦察图信息的融合是特别有益的,在0dB SNR中产生令人印象深刻的50级精度超过96%,超过10 dB SNR及以上的精度超过99%。同时,发现侦视图图像特征在-5 dB和-10 dB SNR的极端噪声情况下表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号